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Abstract—This work delves into the vital role of TLS (Trans-
port Layer Security) in securing web applications today. We
explore kTLS (Kernel TLS) offloading as a possible solution to
alleviate resource strain such as CPU time, power consumption,
and network speed. By shifting cryptographic tasks closer to
the CPU in software offloading or away from the main CPU
in hardware offloading, kTLS can improve resource efficiency.
Our experimental studies assess various offloading strategies,
including software-based kTLS that bring it closer to the Kernel
and cutting-edge hardware-accelerated modes such as TOE and
coprocessor configurations using the Chelsio T6 SmartNIC. We
highlight the immense potential of kTLS and network adapters in
reshaping performance and efficiency dynamics for some network
environments, considering each approach’s benefits and potential
drawbacks.

Index Terms—Offloading, acceleration, cryptography, Smart-
NIC, carbon-awareness.

I. INTRODUCTION

Offloading represents an approach for mitigating CPU load
by harnessing external processing units. Within computer
networks, offloading stands as a pivotal technique aimed at
alleviating the computational burden on server processors,
thereby enabling the primary CPU to dedicate more resources
to applications [1]. In the contemporary landscape, character-
ized by the burgeoning adoption of microservices architecture,
offloading has assumed a prominent role in enhancing the
resource efficiency of these distributed applications [2].

In addition to offloading, TLS is a protocol that secures
communications and is essential to modern Web applications.
With the evolution of the Web, TLS has become crucial,
a mandatory requirement in most HTTP/2 implementations,
and part of the proposal of the HTTP/3 protocol (HTTP over
QUIC) [3]. TLS ensures data privacy, integrity, and security in
online transactions, making it fundamental to the functioning
of web applications [4].

kTLS is a software module that provides an interface for
offloading the processing of the TLS protocol to specialized
hardware or software [5]. The objective of kTLS is to ease
the offloading of TLS by providing a standard interface for
hardware acceleration of cryptographic functions [6]. This
approach can significantly reduce the computational burden
on server processors and enhance the resource efficiency of
distributed applications, even in cloud environments [7]. In ad-
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Fig. 1. Illustration of the data flow paths for kTLS (Kernel TLS) and its
hardware (HW) and software (SW) modes in comparison to the typical user-
space TLS libraries like GNUTLS or OpenSSL. The diagram showcases how
kTLS brings TLS operations closer to the kernel, while hardware offloading
leverages specialized hardware (SmartNIC) for enhanced cryptographic pro-
cessing and optimized TLS traffic handling.

dition to hardware acceleration, kTLS also supports a software
mode that brings TLS closer to the kernel, reducing context
switches. By providing a kernel interface for TLS processing,
kTLS reduces the need for user-space libraries to handle
TLS, resulting in faster and more efficient processing of TLS
connections. Furthermore, the software mode enables kTLS to
fully utilize the available CPU resources, resulting in improved
performance and reduced latency [8]. By supporting both
software and hardware offloading, kTLS provides a flexible
and efficient approach to offloading TLS, enabling applications
to take advantage of the latest hardware technologies for
enhanced performance and resource efficiency.

Figure 1 shows the datapath of three distinct modes using
kTLS: the usual mode without kTLS (Fig. 1 (a)); The datapath
with kTLS in software mode (Fig. 1 (b)); and datapath with
kTLS in hardware mode (Fig. 1 (c)).

Our study aims to analyze the effectiveness of different
offloading scenarios using kTLS, with the SmartNIC Chel-
sio T6 as a specialized hardware. We assess these scenar-
ios in bare-metal and containerized environments, with the



containerized setup resembling a cloud-native microservice
architecture. We also evaluate scenarios with and without
dedicated hardware under various offloading modes, including
No Offloading (user-space library TLS), Software kTLS, Inline
mode hardware kTLS utilizing the TOE (TCP Offloading
Engine), and Coprocessor mode hardware kTLS (similar to
AES-NI [9] but in the SmartNIC). Our findings underscore the
potential benefits and opportunities kTLS presents when paired
with network adapters. We observe positive tendencies on
resource effectiveness for software and hardware offloading,
especially in bare-metal scenarios, where the hardware acceler-
ation shows significant performance improvements. However,
in a cloud-native architecture (containerized environments), we
could not verify a significant difference between hardware and
software offloading.

Our experiments showed that implementing kTLS requires
a Linux kernel version of at least 4.13, a supporting crypto-
graphic backend, and code compilation against this backend.
This suggests that the implementation process is not straight-
forward.

To run all the evaluations, we carefully prepared a set of
artifacts to fine-tune the experiments and ease the reproducibil-
ity. The methodology adopted for conducting the experiments
is of paramount importance for the accuracy and analysis
of the results. As such, we consider that such methodology,
materialized in scripts and tools, all publicly available1, is also
a valuable contribution that may be used by others to evaluate
SmartNICs from different vendors.

The rest of the paper is organized as follows: Section II
presents the related work. Section III briefly explains the main
concepts involved in this research. Section IV explains the
methodology used to set up the experiments and evaluate
their results, describes experiments done during the research,
and discusses its results. Section V discusses our concluding
remarks and future opportunities.

II. RELATED WORK

In this section, we present an overview of related works in
the field of offloading and the use of SmartNICs, particularly
focusing on their relevance to our research on TLS offloading.

The paper featured on [10] discusses the usage of FPGA-
based SmartNICs to accelerate general-purpose cloud applica-
tions and their capabilities for offloading hypervisor network
infrastructure. NICA [10] is presented as a hardware and
software framework designed to accelerate the data plane
of applications on F-NICs2 in multi-tenant systems. A new
programming abstraction called ikernel is introduced to allow
application control of F-NIC computations. NICA is imple-
mented on Mellanox F-NICs and integrated with the KVM hy-
pervisor, demonstrating significant acceleration of real-world
applications in virtualized and bare-metal environments, with
minor code modifications. The throughput of an ikernel added
to a memcached server reaches 40 Gbps and scales linearly to
up to six independent virtual machines.

1https://github.com/dcomp-leris/tls-offloading-research.
2Shortened term for SmartNICs utilizing FPGA technology.

The work in [11] explores the potential of emerging Smart-
NICs with advanced processing capabilities like multicore
processors, onboard DRAM memory, programmable DMA
engines, and accelerators for generic datacenter server tasks.
However, efficiently harnessing SmartNICs for maximum of-
floading benefits in distributed applications remains uncer-
tain. To address this, the authors evaluate four commercial
SmartNICs, examining offloading performance in terms of
traffic control, computational power, onboard memory, and
host communication. Using these findings, they introduce
iPipe [11], an actor-based framework for offloading distributed
applications on SmartNICs. At its core, iPipe employs a hybrid
scheduler combining FCFS-based processor sharing and DRR,
effectively handling tasks with varying running costs and opti-
mizing NIC processing. With iPipe, the authors develop real-
time data analysis engines, distributed transaction systems, and
replicated key-value stores, evaluating their performance on
commercial SmartNICs. Results indicate significant savings in
Intel core usage and reduced application latencies, particularly
when processing at 10/25 Gbps application bandwidths.

The work in [12] addresses the issue of CPU overhead
caused by symmetric encryption and TLS authentication in
data center servers handling encrypted traffic. The article
suggests offloading TLS symmetric cryptographic processing
to network devices, specifically using a kernel TLS module
(kTLS) that leverages inline TLS acceleration. This allows
the network device to process TLS connections and decrypt
transmitted packets before reaching the kernel stack. The kTLS
module’s functions, requirements, and performance benefits
are detailed. This offloading approach is flexible and can
significantly improve the performance of some environments.

Certainly, the authors in [13] uncovered intriguing insights;
for instance, employing external hardware to alleviate CPU
load did not invariably yield performance benefits. They
observed a minor performance dip when varying message sizes
for tasks like hashing. While the notion that SNICs3 might
consistently enhance cryptography scenarios is intuitive, it is
prudent to acknowledge that such uniformity may not apply
across all scenarios. Rather, a complex interplay of factors
must be considered when devising an offloading strategy. It is
important to acknowledge the research conducted in [13] for
its valuable findings and contribution to the field. However, it
is also worth noting that the analysis did not include an evalua-
tion of CPU time and power consumption, which are important
factors in assessing the efficiency of offloading techniques.
Despite this limitation, the research remains an insightful and
informative study that has advanced our understanding of the
subject.

Despite related works effectively presenting the advantages
of offloading to SNICs in general, few studies delve into the
application of kTLS as a TLS offloading method. This research
centers on evaluating the kTLS kernel module’s ability to
abstract cryptographic functions and enable offloading through
both software and hardware channels. The primary objective

3Commonly employed acronym for SmartNIC.



of this paper is to showcase the module’s advantages within
the context of web applications.

Upon a comprehensive review of the academic and com-
mercial landscape documented in the literature, it becomes
evident that significant attention has been directed toward TLS
hardware offloading. However, few references do specifically
address these scenarios incorporating kTLS. Consequently,
this paper endeavors to assess cryptographic offloading on
NICs using kTLS, filling a noteworthy gap in the current body
of research.

III. BACKGROUND CONCEPTS

This section presents an overview of terms in the paper,
focusing on Offloading and different modes that the SmartNIC
used in the experiments provides.

A. Offloading

Offloading is the technique that transfers processing tasks
from one component to another to reduce the workload of
a system and increase its efficiency [14]. This technique
is commonly used in networking systems, where offloading
specific tasks to specialized devices (such as network cards,
for example) can significantly improve system performance
and reduce overhead on the main CPU. Offloading is applied to
compression/decompression, encryption, video decoding, and
other tasks [15].

B. kTLS - Kernel Transport Layer Security

The kTLS kernel module is a security extension that en-
hances the TCP transport protocol on Unix-like systems that
support it by adding encryption and authentication features.
With kTLS, it is possible to implement TLS encryption in the
operating system kernel, which can offer superior performance
compared to user-space software solutions. Moreover, kTLS
can be utilized for TLS offloading on network cards that
support it, enabling encryption and authentication to be carried
out directly by the network card [5]. This can help reduce CPU
load and enhance the overall performance of the system.

C. Chelsio’s Coprocessor and Inline offloading

For the experiments in this paper, we used the SmartNIC
Chelsio T62100-LP-CR. There are other SmartNICs on the
market capable of performing TLS acceleration via kTLS,
such as NVIDIA’s Bluefield line [16]. We chose the Chelsio
T6 line due to its cost-effectiveness and the availability of
documentation that can be found on the Internet. It is important
to contextualize that the Chelsio T6 has two offloading modes:
Inline and Coprocessor modes. In the Inline mode, the offload-
ing happens in the context of Chelsio’s proprietary TOE of the
SmartNIC, and it occurs in parallel to other offloading opera-
tions like Direct Data Placement (DDP), Direct Data Sourcing
(DDS) and checksum calculation using CRC algorithm. The
Coprocessor mode is analog to AES-NI but in the SmartNIC.
In contrast, the Inline mode only supports offloading crypto
functions related to TLS/DTLS. In the Coprocessor Mode, the
SmartNIC can run crypto functions like data encryption at rest,
SMB, IPSec, and hashing algorithms.

IV. EVALUATION

A. Setup

During the experiments, two machines were used, one acting
as a server and the other as a client. The server has a 1 dual
port 100GbE Chelsio T62100-LP-CR installed and connected
back to back to the client through a splitter cable, splitting one
of the 100G ports into 4x10GbE ports. We used the Chelsio
Unified Wire v3.18.0.0 to install and update the firmware,
drivers, and utilities required to use the offloading capabilities
of the T6 and to make sure it all worked as it should. We
used the specific kernel version recommended by the vendor
as specified in Table I. All other configurations used can also
be seen in Table I.

We used separate hosts for the client and server, as this
approach minimizes resource interference, simulates real net-
work conditions, and provides better control over variables,
ensuring accurate results. Using a single host simplifies testing
but may introduce uncertainties and reduce precision.

It is essential to keep in mind that, aside from the client and
server having NICs with 10G and 25G capacities, respectively,
these capabilities can be influenced by various other factors,
including the performance of the computers, the resource load
on the hosts, and even physical issues such as cabling [17]. No
rate limit was imposed on the programs used for generating
traffic, and we made efforts to isolate these machines from
physical interferences so the traffic generators could use as
much bandwidth as they could from the network connection.
We can see how resources can affect the throughput as we
observe that in the bare-metal setup, the maximum throughput
achieved during this test was 9.36 Gbps, indicating robust per-
formance. In contrast, the containerized experiments yielded
a lower maximum throughput of 588 Mbps, likely due to
resource constraints on the client and server hosts.

OpenSSL version v3.0 or higher is required for the kTLS
module to be supported, so we used OpenSSL 3.0.7 compiled
with the ’enable-ktls’ flag. NGINX 1.22 was chosen
as the web server, effectively performing the roles of a load
balancer for other applications and delivering binary files of
varying sizes to capture relevant traffic metrics.

The evaluations were split into two big scenarios: Bare-
metal and containerized. To build the microservice environ-
ment for the containerized evaluations, we opted for an NG-
INX Docker [18] image with kTLS configuration and a static
blob file. This setup allowed us to conduct tests that closely
paralleled the bare-metal scenarios, ensuring consistency and
comparability in our evaluations.

To conduct the experiments and collect essential data
samples, we employed a combination of tools, including
cURL [19] and wrk [20], for sending requests to NGINX.
The orchestration of these requests was facilitated through
Bash and Python scripts. cURL was used just to generate
traffic while collecting CPU and Power data, while wrk
supplied network statistics, enabling us to calculate the average
throughput and latency of the conducted tests.



Component Server Client
Processor i7-7700K Xeon E5-2420
RAM Mem-
ory

32GB (4x8 DDR4
2133mhz)

32GB (2x16 DDR3
1600mhz)

Motherboard Gigabyte Z170XP-SLI Dell PowerEdge R420
Operating
System

RHEL 9.2 (5.14.0-
284.11.1) Ubuntu 22.04.2 (5.15.0-72)

Network
Adapter Chelsio T62100-LP-CR Intel 82599ES

TABLE I
CLIENT AND SERVER SPECIFICATIONS

Collecting the metrics related to the CPU time was done
using CollectD [21] as it provides a reliable way to get
the CPU time per process with low overhead of the collecting
agent. To get more precise CPU use by the target processes, we
used the CPU affinity method, that in Linux can be achieved
using isolcpus and taskset to bind the processes related to the
tests to a single CPU core and avoid resource sharing with
other processes.

The Intel RAPL interface facilitates the reporting of power
consumption metrics. To streamline the collection of sensor
metrics, we employed Scaphandre Prometheus Exporter. Ad-
ditionally, we utilized Prometheus and Grafana to visualize
and interact with the data through a web API.

B. Experiments

During the experiments, we conducted tests for each of
the four operational modes: No Offloading, Software kTLS,
Coprocessor, and Inline Mode.

• No Offloading: This method occurs in user-space, where
traditional encryption and decryption tasks are processed
mainly by the CPU;

• Software kTLS: This mode uses the kTLS module to
offload encryption tasks to the kernel, reducing CPU
workload. It is a software-based approach that requires
compatible applications and kernel support;

• Coprocessor: The Chelsio’s T6 Coprocessor mode al-
lows for hardware offloading of TLS encryption and
decryption tasks to a specialized coprocessor, similar in
concept to Intel’s AES-NI instructions for accelerating
encryption and decryption operations;

• Inline: The Chelsio’s T6 Inline mode utilizes a TOE to
handle TLS tasks directly in the network stack. It offloads
some encryption tasks of the TLS process to dedicated
hardware.

Each offloading mode of Chelsio requires a different Linux
module to be loaded. In the case of Inline mode, the TOE
has to be loaded with a module called t4_tom. For the
Coprocessor mode, the module chcr has to be loaded. At
the time this paper was written, t4_tom was not able to be
hot-loaded and unloaded during the system execution, so every
time you needed to change back to another mode, you had to
reboot the system to make sure the modules were unloaded.

The experiments take time to run, as they involve several
complex procedures and measurements. To automate the sys-

tem restarts and reduce human intervention during the tests,
a state machine was implemented using SystemD [22]. This
not only streamlined the testing process but also significantly
augmented reproducibility. With this method, for every system
restart, the server seamlessly alternated between experimental
scenario modes: No Offloading, Software kTLS, Hardware
kTLS (Inline), and Hardware kTLS (Coprocessor). In each
iteration, the server interacted with the client to execute the
tests and then automatically restarted to transition to the next
step and activate the subsequent scenario mode. This utiliza-
tion of SystemD ensured that the necessary kernel modules
were loaded accurately, contributing to precise and replicable
experiment outcomes.

During our testing and analysis, we tracked the main metrics
that may affect the decision about using offloading or not: CPU
time, Power Consumption, Latency, and Throughput.

• CPU Time: Measured by Collectd, indicates the time
the CPU spends in various states, such as executing user
code, executing system code, waiting for I/O operations,
and being idle. It provides insights into CPU utilization
and performance. In our case, this value was accumulated
over the time a file was downloaded, and the raw data,
which is in ns, was converted to ms to provide better
visualization.

• Power Consumption: Metrics collected by Scaphandre
focus on electrical power usage in technology services.
It measures the energy consumed by servers, storage
equipment, and network infrastructure. In our case, this
value was accumulated over the time a file was down-
loaded, and the raw data was in microwatts (µS) and then
converted to watts (W).

• Latency: Reported by the wrk benchmarking tool, repre-
sents the time it takes for a system to respond to an HTTP
request. It provides insights into the responsiveness and
performance of a web server or application, with lower
latency indicating quicker responses. A custom script was
used to export data to CSV, where the average latency that
wrk calculates could be obtained. Raw data was provided
in µs and, for better visualization, converted to ms.

• Throughput: Measured by wrk, quantifies the volume
of requests a web server can handle within a specified
time frame. It reflects the server’s capacity to process
incoming requests efficiently. Higher throughput values
indicate better server performance under load. A custom
script was used to export data to CSV and to calculate the
throughput (bytes/duration), then the value was converted
to MB/s.

While the tests were running, CollectD, Scaphandre, and
Prometheus ran in the background, monitoring resource usage
and recording it in a time series database. To process the time
series data and analyze its values, Grafana was used to visu-
alize Scaphandre data exported to Prometheus, and for RDD,
the database format used by CollectD could be visualized by
RDDTool [23]. To further analyze the data and generate graph-
ics, they were exported to CSV and processed through Python



using libraries like Pandas [24] and Numpy [25]. For plotting
this data into a visualization4, libraries like Matplotlib [27],
and Seaborn [28] were used, and to enhance their usability, a
Jupyter [29] environment was employed.

Python, in conjunction with Bash Scripting, played a pivotal
role in automating various processes throughout the experi-
ment. Python was employed for orchestrating test sequences,
performing essential tasks such as loading the requisite kernel
modules for each test scenario, regulating the volume of
requests directed to the server, facilitating data retrieval via
the Python Requests library, and managing remote machine
reboots to transition between successive test scenarios, among
other functions.

The Podman [30] was used as the container management
tool for the containerized tests. A Debian image with OpenSSL
and NGINX compiled with kTLS flags was made. A bash
script was responsible for provisioning several containers, and
in front of the machines, an NGINX Load Balancer was
running in the bare-metal machine in Round Robin mode. This
way, each connection would cycle by each application in each
container every time the server receives a request.

To keep track of the experiments and grant ease of repro-
ducibility, a series of scripts was used to automate the pipeline
of the experiments. One of this automation was reporting
the partial result of the runs in instant messaging apps like
Telegram [31] and Discord [32]. In this way, if there was a
malfunction during the experiments, we would know and have
external logs of these occurrences.

C. Results

In accordance with the experimental configuration, we con-
ducted a battery of tests to systematically assess each scenario,
distinguishing between bare-metal and containerized setups.

CPU time and power consumption were acquired as ac-
cumulated values during the experiments. Scaphandre and
CollectD continuously collected data while cURL generated
network traffic by downloading a large file. These cumulative
values were instrumental in understanding resource utilization
and power efficiency. In contrast, throughput and latency met-
rics were sourced from statistics provided by the wrk tool. wrk
operated within a defined time frame, meticulously tracking
the volume of requests completed within that timeframe while
varying the number of concurrent connections. This approach
allowed us to precisely assess download speeds and response
times under different scenarios, providing invaluable insights
into system performance.

1) Bare-metal Experiments: In this section, we delve into
the outcomes of our experiments conducted in a bare-metal
environment. These experiments provide essential insights into
the performance of the system with a focus on CPU time,
throughput, latency, and power consumption. These tests were
done using an NGINX server running directly on the bare-
metal server mentioned in Table I.

4IBM’s accessibility palette for visually impaired people was used to
improve contrast for people that suffer from color blindness [26].

CPU - The scenario used was an NGINX serving a 30GB
file that gets downloaded a hundred times to get the CPU
time. The exact procedure will run in every test scenario:
without kTLS, with software kTLS, with hardware kTLS
using Chelsio’s Inline mode, and with hardware kTLS using
Chelsio’s Coprocessor mode.

The results showed in Figure 2 for accumulated CPU time
were reflected on the CPU time share used during a file
download. It was possible to observe that the CPU time was
progressive, varying from a scenario without offloading to a
scenario using offloading (SW and HW). Without offloading,
the expected behavior was the CPU being extensively used
when compared to Software kTLS Mode. Software kTLS
Mode performed better than No Offloading, and it can be
explained because it reduces the number of kernel context
switches as the operations to handle TLS are closer to the
system kernel (as we see in Figure 1). Finally, the hardware
modes (Coprocessor and Inline) were expected to perform
better as they use an external processing unit (Chelsio’s T6 in
our case) to handle traffic encryption operations. Takeaway:
In terms of CPU time, hardware offloading, especially in
Coprocessor Mode, proved to be the most efficient option.
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Fig. 2. CPU time (converted from ns to ms) analysis in bare-metal scenarios
(without containers).

Throughtput - We analyzed the throughput of parallel con-
nections to determine the potential benefits and drawbacks of
utilizing kTLS offloading. Our findings indicated that in cer-
tain scenarios, there was a disparity in performance compared
to other modes.

As shown in Figure 3, when the server managed only one
connection, the performance of hardware offloading was worse
than the other modes. The Coprocessor mode obtained only
≈1.7Gbps. However, as the number of parallel connections
increased, leading to higher CPU time demands, the imple-
mentation of kTLS offloading emerged as an effective means
to enhance the average throughput of TLS traffic. It is worth
noting that despite the Inline mode utilizing more CPU than
the Coprocessor mode, the Inline mode was still able to deliver
better results for throughput (9.36Gbps). This is due, in part, to
its dual functionality, which includes both TLS offloading and
essential TCP offloading tasks, such as checksum verification
(CRC offloading), as described in III. Takeaway: Hardware
offloading delivered superior throughput performance when
dealing with multiple parallel connections.
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Fig. 3. Evaluation of download throughput in bare-metal setups (without
containers) to examine how different offloading modes influence download
speeds in different environments.

Latency - Response time was impacted by the different of-
floading modes we tested. As can be observed in Figure 4, the
number of connections influenced the results. In scenarios with
a single connection, the No Offloading scenario performed
best as the CPU was less active than in other scenarios where
the server had to handle multiple connections. An interesting
observation is that for a single connection, the Inline Mode
performed much worse than the others. This may be explained
by the overhead needed to make the Inline Mode run, such
as the TOE, which competed for resources more than in the
other modes. However, the Inline Mode made a comeback
when we observed scenarios with more parallel connections. In
such cases, the server achieved better latency in the hardware
offloading scenarios, as expected, due to the shorter data path
in these modes, resulting in reduced latency. Takeaway: Hard-
ware offloading, particularly in Coprocessor Mode, delivered
superior performance for latency when dealing with multiple
parallel connections.
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Fig. 4. Latency during concurrent downloads in bare-metal environments
(without containers).

Power Consumption - The results presented in Figure 5
regarding power consumption can be elucidated by examining
the interplay between CPU time and throughput. Firstly, in
scenarios characterized by higher throughput, we anticipated
faster processing, thereby reducing CPU time over time as
data transmission occurred quicker, necessitating less CPU
time. Indeed, we observed that the data exhibited a notable
resemblance to the CPU time metric, reinforcing this correla-
tion. However, a notable anomaly surfaced when considering
the Inline Mode, which, despite its superior throughput and

efficient CPU utilization, demonstrated comparatively poorer
performance in terms of power consumption. This unexpected
behavior can possibly be attributed to the substantial overhead
associated with the complete execution of the TOE required
by the Inline Mode, rendering it considerably more CPU-
intensive than the other modes [33]. Consequently, although
Inline Mode may enhance speed, it appears to compromise
energy efficiency in the process.

In contrast, the Coprocessor Mode presented an intriguing
contrast. It exhibited the potential for significant power con-
sumption gains. It offloads critical cryptographic operations to
specialized hardware, reducing the CPU’s load. This reduc-
tion in CPU utilization translates directly into lower power
consumption, suggesting that the Coprocessor Mode offers a
promising avenue for optimizing energy efficiency in scenarios
where cryptographic offloading is critical.

In the context of the United States Data Center Energy
Usage Report [34], our study aligns with the industry’s aim
to optimize energy efficiency in data centers. As data centers
seek to reduce electricity consumption while meeting growing
digital service demands, our kTLS analysis highlights the
need for technologies that balance performance and power
efficiency. Takeaway: Coprocessor Mode exhibits a small
advantage in efficiency compared to the others, while Inline
Mode, pays the trade-off of throughput with higher power
consumption.
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Fig. 5. Power consumption patterns, measured as accumulated values, in
bare-metal test scenarios (without containers).

The Inline mode showed a worse performance compared
to other test scenarios. It may be related to the Inline mode
requiring the TOE, as it performs additional functions beyond
cryptographic offloading.

2) Containerized Tests: When evaluating the system’s per-
formance in TLS offloading, it became clear that container-
ization is a must when working with microservices. This
investigation aimed to determine whether SmartNIC offloading
could alleviate the infrastructure overhead associated with
running multiple containers. To achieve this, we used a script
to orchestrate the number of containers running behind the
load balancer (described in IV - A - Setup), allowing us to test
scenarios for different numbers of containers progressively.
By instantiating varying numbers of containers on the host
machine, each running a lightweight web application tasked
with serving data, we were able to assess the impact on the
system’s performance. It is essential to note that the coproces-



sor mode of Chelsio did transparently work for containerized
scenarios, which could be validated by the driver utilities that
count encryption operations done by the NIC. Unfortunately,
Chelsio’s Inline mode did not work for the containerized
scenario. Therefore, this section will not present results related
to this mode.

The results showed that the offloading scenarios exhibited
superior performance when resource consumption scaled up,
particularly with an increase in the number of containers, while
the No Offloading approach performed well in situations where
the server has vast resources to manage requests.

It is worth mentioning that the tests and the numbers shown
in this paper were performed with default Docker settings to
evaluate a standard scenario. However, performance enhance-
ments are achievable through fine-tuning. For example, we
reached a throughput of around 2.60 Gbps by configuring
the container to utilize a --net=host type network with
a mounted volume for static files.

CPU - In the containerized scenario, as illustrated in Fig-
ure 6, a similar pattern to the bare-metal results emerged.
Initially, with plenty of resources available for the server to
handle requests and manage the container backend, Software
kTLS showcased its potential. However, as the number of
containers increased, it became increasingly apparent that
Software kTLS presented a more favorable option. Takeaway:
Over time, as resources become shorter, Software kTLS may
offer a competitive advantage compared to the alternatives.
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Fig. 6. Accumulation of CPU time (converted from ns to ms) within a
containerized environment.

Throughput - Upon an examination of Figure 7, a clear trend
emerges: as the number of concurrently executed containers
tests run, Software kTLS consistently demonstrates slightly
superior performance compared to the Coprocessor, and both
performed better than no offloading. These findings highlight
the effectiveness of Software kTLS, showcasing its competi-
tive edge in throughput, especially in high-demand scenarios
with containers. Interesting to note that the containerized
scenario obtained a very low throughput (588Mbps) when
compared with the bare-metal (9.36Gbps). Takeaway: The
results clearly indicate that offloading, be it hardware or
Software kTLS, offers advantages in cloud-native setups when
talking about throughput.

Latency - As we observed in Figure 8, the increase in the
number of containers showed slight differences in response
time. The most significant difference was when comparing

the single container scenario to the others. Notably, this
impact on latency closely resembled the impact on throughput,
where it was very similar between the scenarios with different
container numbers except for the single container scenario.
As the results from throughput, Software kTLS exhibited an
advantage over the other modes, so it did for latency. In
contrast, the Coprocessor mode was expected to perform better
as it got better CPU time and power consumption results,
however, Coprocessor mode performed worse than Software
kTLS. Takeaway: Software kTLS consistently exhibited lower
latency than the other modes.

Power Consumption - Based on the experiments conducted,
we can observe in Figure 9 that while there was a slight
improvement in performance from 25 to 50 containers, the
benefits of hardware TLS offloading became more evident
when we scaled up to 100 containers. It seems that in
high resource usage scenarios, the offloading methods tend
to slightly reduce power consumption compared to the No
Offloading approach. This trend was particularly noticeable
with 100 containers, highlighting the importance of utilizing
hardware offloading techniques when dealing with large-scale
microservices. Takeaway: Our results indicate that over time,
as resource usage increases (number of containers), offloading
reduces power consumption, particularly in resource-intensive
situations.

D. Observations

1) Legacy Applications: - Enabling kTLS support in an
application typically entails compiling it with a specific flag-
enabled version of OpenSSL (or other cryptographic backends
that supports it), like OpenSSL 3.0.0, which allows the appli-
cation to utilize kTLS for improved performance in handling
TLS traffic. However, a notable challenge arises when dealing
with applications for which the source code is inaccessible,
as you may lack the ability to modify or recompile them to
enable kTLS. This limitation can impede the integration of
kTLS into closed-source or proprietary applications, hindering
the realization of its performance benefits in such cases.
Additionally, It is worth noting that kTLS requires a kernel
version of at least 4.13 for full support [35].

2) TLS v1.3 Support: - One of the primary advancements
in the TLS protocol was the release of TLS version v1.3 in
2018 [36]. TLS v1.3 introduces a new handshake procedure
that substantially reduces the time required to encrypt a
connection, thereby improving the protocol’s performance. In
our tests, we observed that TLS v1.3 was partially supported in
hardware mode, specifically for Chelsio’s T6 model. However,
we discovered that TLS v1.3 was only supported in the Copro-
cessor Mode, whereas the Inline Mode exhibited unexpected
behavior when attempting to run the mode along with TLS
v1.3.

3) QUIC Support: - QUIC is a protocol that offers a
low-latency alternative to TCP. It operates over the UDP
protocol, as its name suggests, which stands for Quick UDP
Internet Connections [37]. One of its main features is built-in
encryption for all connections [38]. While the QUIC protocol
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Fig. 7. Download throughput in containerized setups, considering different numbers of concurrently running containers.
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Fig. 8. Latency dynamics during concurrent downloads in containerized environments.

5 25 50 100
Containers

0

100

200

300

400

500

600

700

Po
we

r C
on

su
m

pt
io

n 
(W

)

No Offloading
SW kTLS
Coprocessor

Fig. 9. Power consumption patterns measured as accumulated values in
containerized test scenarios.

specification does not explicitly specify the version of TLS,
most QUIC implementations use TLS v1.3.

During our testing, we assessed various QUIC implemen-
tations, including ngtcp2 [39]. We aimed to configure ngtcp2
with OpenSSL build with kTLS flags targetting Coprocessor
Mode. However, enabling QUIC with hardware TLS offload-
ing on our Chelsio T6 posed challenges. Chelsio’s documen-
tation indicates that QUIC offloading support will be available
in the T7 ASIC.

V. CONCLUSIONS AND FUTURE WORK

In conclusion, our assessment of kTLS in various oper-
ational modes within bare-metal and containerized environ-
ments reveals a nuanced landscape of performance trade-offs
and underscores key considerations for future implementa-
tions. Our power consumption analysis revealed interesting
trades. Notably, for some scenarios, the Inline Mode exhib-
ited unexpected energy inefficiencies while delivering other

performance benefits. This discovery highlights the intricate
relationship between performance optimization and power
management in offloading technologies.

To address real-world challenges associated with integrat-
ing kTLS into closed-source or proprietary applications, this
endeavor should be prioritized in future efforts. Developing
mechanisms or compatibility layers that enable seamless kTLS
integration, even when source code is inaccessible, can signif-
icantly enhance the technology’s practicality. Furthermore, to
keep kTLS at the forefront of secure network communications,
vendors must extend their support to newer encryption stan-
dards like TLS 1.3 and evolving protocols like QUIC. Adapt-
ing to these emerging standards will enhance kTLS’s relevance
and applicability in contemporary networking scenarios.

Exploring innovative methods to make kTLS more accessi-
ble to a broader range of network software presents an ongo-
ing challenge. Subsequent research should focus on creating
novel tools, frameworks, or middleware that streamline kTLS
integration across various application landscapes, ensuring its
advantages are accessible to a broader community of users.
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