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Abstract—Augmented Reality (AR) real-time interaction be-
tween users and digital overlays in the real world demands low
latency to ensure seamless experiences. To address computational
and battery constraints, AR devices often offload processing-
intensive tasks to edge servers, enhancing performance and
user experience. With the increasing adoption and complexity
of AR applications, especially in remote rendering, accurately
classifying AR network traffic becomes essential for effective
resource allocation. This paper explores two methods based
on Decision Tree (DT) and Random Forest (RF) to classify
network traffic among AR, Cloud Gaming (CG), and other
categories. We rigorously analyze specific features to precisely
identify AR and CG traffic. Our models demonstrate robust
performance, achieving accuracy rates ranging from 88.40% to
94.87% against pre-existing datasets. Moreover, we contribute
with a novel dataset encompassing AR and CG traffic, curated
specifically for this study and made publicly available to facilitate
reproducible research in AR network traffic classification.

Index Terms—Augmented Reality, Traffic Classification, ML.

I. INTRODUCTION

Extended Reality (XR), which includes Virtual Real-
ity (VR), Augmented Reality (AR), and Mixed Reality (MR),
aims to enhance human interaction with digital and real-
world environments. VR immerses users in entirely digital
landscapes, whereas AR supplements the real world with
digital overlays, and MR facilitates interaction between real
and virtual elements [1, 2]. The application of XR technologies
spans diverse fields, e.g., gaming, entertainment, healthcare,
and education, with projections indicating that the mobile AR
market will expand to four times by 2026 [3]. HMDs (Head
Mounted Displays) are pivotal in XR, offering visual, audio,
and sensory feedback. VR headsets deliver a completely
immersive experience by isolating the user from the physical
world, while AR glasses enhance real-world interactions with
digital information. Current AR glasses are available in two
categories: phone-powered, reliant on smartphones for com-
putational tasks, and stand-alone, which are self-sufficient in
computing [4–8]. Advancements in offloading AR processing
and remote (game) rendering to edge servers are aimed at man-
aging the computational demands by leveraging the servers’
superior processing capabilities and leveraging advances in
network connectivity such as 5G [9–17]. This strategic shift
enhances Quality of Service (QoS) and Experience (QoE)

through efficient edge cloud processing for XR and Cloud
Gaming (CG) applications.

Classifying network traffic for effective resource allocation
remains imperative to accommodate the varying demands of
different applications [18, 19]. However, challenges behind
traffic classification are compounded by encryption and the use
of dynamic ports, making application identification through
network traffic analysis more complex. Current strategies
for traffic classification include port-based, payload-based,
and machine learning (ML)-based methods. By handling the
hazards of payload encryption and dynamic port allocation,
ML approaches are gaining prominence in accurately clas-
sifying network traffic at high performance and affordable
costs across various hardware platforms, including GPUs,
SmartNICs equipped with CPUs, and FPGAs [18, 20].

In this paper, we present a solution for traffic classification
of AR, CG, and other applications (e.g., web-based network
traffic) using flow-based features in DT and RF models.
Compared with previous work on CG traffic classification [21],
as far as we know, this is the first work that jointly classifies
AR and CG. The contributions of this paper are:

• We propose an algorithm to classify the AR and CG from
other applications based on the network traffic behavior
in Uplink (UL) which is the data transmitted from the
User Equipment (UE) (e.g., AR glasses, game controller)
to the edge server, and Downlink (DL) i.e., the data sent
from the edge server to the UE;

• We select the key features for the network traffic classi-
fication by analyzing the different possible combinations
of the features. Hence, the most effective set of features
is exploited to classify the network traffic in AR, CG,
and other applications with high accuracy;

• We propose a DT and RF model to classify the network
traffic into three classes: AR, CG, and other applications
based on network flow features. The models are trained,
tested, and improved with real traces of AR and CG
applications;

• Finally, we collect AR and CG network traffic to test
and improve the model. All the collected PCAP files
and Jupyter notebooks for reproducibility are publicly
available.



The rest of the paper is organized in the following sec-
tions. Section II discusses the background of VR/AR, and
CG network traffic models. Section III addresses the related
works. Section IV shows the proposed algorithm to classify
network traffic in AR, CG, and others. Section V presents
the hyperparameters tuning for improvement and the feature
effectiveness analysis to select the most effective features for
classification. Section VI details the AR and CG datasets
that were collected in this work. Section VII reports the
performance of classification examined on pre-existing and
the datasets collected in this work. Then, the challenges are
discussed in Section VIII. Finally, section IX concludes this
paper.

II. BACKGROUND

This section outlines the distinctive features of network
traffic associated with VR/AR and CG. Understanding these
characteristics can aid in effectively identifying these applica-
tions through network traffic analysis.
VR/AR Network Traffic. VR/AR traffic comprises two types
of data flow directions: UL where data is sent from the HMD
to the edge server, and DL in the other direction. In VR/AR,
the HMD initiates communication with the server, generating
significant UL and DL traffic due to immersive data. In VR,
initial HMD messages convey position and orientation, guiding
the server to select video segments matching the HMD’s Field
of View (FoV). In VR, UL traffic is minimal, while DL traffic
is significant, attributed to the HMD’s FoV. In AR, if rendering
occurs within the glasses, traffic patterns mirror VR. However,
when rendering is offloaded to the edge server, both UL and
DL traffic intensify. AR requires significant UL bandwidth
to transmit the frames of the scene, and DL bandwidth
increases for returning digital objects and scene frames to
the HMD, leading to considerable traffic both ways [22]. In
AR, when rendering occurs within the HMD, network traffic
patterns resemble those in VR, yet distinct differences set
AR apart. Offloading VR/AR functions to enhance flexibility
emphasizes the network’s critical role in connecting HMDs
and rendering servers, crucial for managing XR traffic and
minimizing delay [17, 22, 23].
XR/CG Network Traffic. The study of XR and CG traffic by
3GPP, detailed in [15, 24–26], highlights the distinct roles of
UL and DL in traffic models. UL primarily handles ‘pose and
control’ traffic, characterized by its light and frequent nature.
Conversely, DL facilitates multimedia streaming, which is
divided into two models: (a) single-stream and (b) multi-
stream. The single-stream model merges video frames, au-
dio, and data into a unified flow, while the multi-stream
model separates these data types into distinct flows. The
multi-stream model supports transmission over two or three
distinct flows, allowing for the separation of video, audio,
and data into individual streams. Alternatively, it offers the
option to distribute video frames—specifically I-frames, P-
frames, and B-frames—across different streams, providing
flexibility in how traffic is managed. This technical report
outlines statistical parameters, e.g., Periodicity (ms), Frame

Rate (FPS), Data Rate (Mbps), Packet Size (Byte), Packet
Delay Budget (PDB) (ms), and Packet Success Rate (%) for
constructing generic VR, AR, and CG traffic models under
both single and multi-stream models. However in [15], the
authors note that CG’s network traffic in a single-stream
setup deviates from the generic model, unlike its multi-stream
counterpart. According to [15], in the single-stream model,
AR and VR share similarities in DL traffic but differ in UL.
Conversely, in the multi-stream model, both exhibit similar DL
patterns and align with the generic model in UL traffic.

III. RELATED WORK

Research on network traffic classification, including port-
based, DPI, and ML techniques, has been extensively reviewed
in [18]. While many studies, e.g. [27, 28], have applied ML
algorithms to identify applications and services, few have
addressed CG and VR/AR classification due to the lack of
labeled datasets. In [21], the authors stand out by classifying
CG and non-CG traffic, collecting and publishing datasets
under normal and disturbed conditions1, with DT achieving the
highest accuracy at 98.5%. However, this binary classification
does not extend to multi-class classification involving CG,
VR/AR, and other categories. The absence of VR/AR labeled
data necessitates modeling VR/AR network traffic to generate
or extract relevant traffic. The work in [29] published an AR
dataset for DL traffic analysis and modeling, used in [17]
for an AR scenario where a user navigates a street with AR
glasses. This scenario, however, overlooks network conditions.
Another approach in [23] introduces a statistical model based
on Johnson’s SU distribution for generating XR traffic, vali-
dated against collected IP traffic. Our work will leverage this
AR traffic model, combining it with CG and non-CG datasets
for a comprehensive training dataset. We aim to train and
test a classification model, then validate its performance with
unseen AR, CG, and non-CG data, and also collect and publish
AR and CG datasets for further research. Therefore, as far as
we know, this paper is the first paper that addresses the AR
network traffic classification and differentiates AR network
traffic from VR, CG, and other applications to take a step
forward to improve the AR network traffic prioritization and
resource allocation.

IV. METHODOLOGY

In XR, the HMDs and the servers are connected with
the network components (e.g. switches, routers, SmartNIC).
Hence, network devices in the path between the user and
server are good places to differentiate the flows and allocate
the appropriate resources aiming at improved QoS and QoE.

The features chosen for classification are discussed in
Subsection IV-A. Then, we propose a general classification
algorithm in Subsection IV-B. The training dataset is organized
in Subsection IV-C. We detail the pre-processing of the dataset
in Subsection IV-D. Finally, the ML algorithm is selected to
train the model based on the training dataset and evaluated as
mentioned in Subsection IV-E.

1https://cloud-gaming-traces.lhs.loria.fr/data.html

https://cloud-gaming-traces.lhs.loria.fr/data.html


A. Feature selection

The network traffic in VR/AR and CG are expected to be
based on a one-stream model [15]. The sensors of VR/AR
glasses, e.g., camera, Inertial Measurement Unit (IMU), and
audio data are fused (multiplexed) in one stream [3–6, 8].
The majority of the data belongs to the XR glasses sending or
receiving high-quality video frames compared to other sensors;
hence, in this paper, the audio and IMU traffic are neglected
to simplify the network flow analysis. Unlike CG traffic, AR
traffic is almost symmetric [22], so we can use the data rate
to differentiate CG from AR traffic on the UL. Hence, one
key feature that can represent the data rate in the packet
flow is the Inter-Packet Interval (IPI). This feature can extract
the traffic behavior to differentiate the AR network traffic
from CG and other applications based on network conditions.
However, classifying DL traffic presents challenges due to the
similarities between AR, VR, and CG traffic and other video
streaming traffic, unlike the more distinguishable differences
in UL. The other two key features for identifying VR/AR
traffic are the resolution and frame rate. The resolution can
be inferred by using the Frame Size (FS) and the frame rate
can be obtained by calculating the Inter Frame Interval (IFI).
Therefore, three features are considered in this research to
classify the network traffic into three classes: IPI, FS, and IFI.
IPI. It is obtained by subtracting the timestamp of the current
packet from the timestamp of the previous packet as indicated
in Eq. (1).

IPIi = Pkti[Time], i = 1

IPIi = Pkti[Time]− Pkti−1[Time], i ∈ {2, . . . , n}
(1)

FS. FS indicates the size of each frame, which is influenced
by the glasses’ resolution and compression ratio. A Marker
bit in the 12-byte Real Time Protocol (RTP) header marks the
start of each frame. Typically, a frame’s size exceeds that of a
single UDP payload, necessitating multiple UDP packets for
transmission. The final packet, carrying the leftover bytes, is
often smaller than its predecessors. The calculation of FS is
detailed in Eq. (2). In the equation, Pkti[Len] indicates the
payload size of the i-th UDP packet, with i ranging from 1 to
n, where n is the total number of packets for a frame.

FS =

n∑
i=1

Pkti[Len] (2)

IFI Before explaining how to obtain this metric, we need to
highlight that a frame is composed of consecutive IP packets.
So, we need to identify where a frame starts and ends. To
solve this, we calculate the time interval between consecutive
frames, determined by subtracting the timestamp of a frame’s
first packet from that of the next frame’s first packet, as
illustrated in Eq. (3). In this equation, F (t) denotes the start
time of a frame, with the subscript representing the frame’s
sequence number.

IFI (N) = FN (t)− FN−1(t) (3)

Algorithm 1: XR/AR and CG Traffic Identification
1 Input: Ingress flow
2 Output: Flow Applications (XR/AR or CG or others)
/* (Step 1) Extract Flow Features */

3 Extract features: IPI, IFI, FS

/* (Step 2) Determine Flow Direction */
4 Identify if the flow is UL or DL using the features

/* (Step 3) Preliminary Classification */
5 Classify the flow into preliminary categories: AR, CG, or

Others based on extracted features

/* (Step 4) Confirm TC using flow UL/DL */
6 if the flow is UL then
7 Classify UL flows as AR, CG, or Others
8 else
9 Classify DL flows as XR (VR or AR), CG, or Others

10 end
/* (Step 5) Final Decision */

11 Based on the preliminary classification and identification,
label the flow accurately.

The first packet of a frame can be identified through specific
headers, e.g., the RTP header, where the Marker flag bit is set
to 1 for the initial packet of the frame and reset to 0 for
subsequent packets. Additionally, the last packet carrying the
frame can also be distinguished either by a reduction in its size
compared to preceding packets or by its distinct behavior.

B. General Algorithm

According to the similarities and differences among VR,
AR, and CG with other applications mentioned in [15, 22],
Algorithm 1 is proposed to designate which flow belongs to
XR/AR, CG, or others based on the UL and DL behavior.

Algorithm 1 effectively categorizes ingress network flows
into application types (VR/AR, CG, or others) by analyzing
the flow’s unique characteristics through a structured five-step
process. The initial step extracts essential features: IPI, FS,
and IFI. Next, the algorithm evaluates the flow’s direction in
Step 2 by analyzing its symmetry or asymmetry, with a par-
ticular focus on the asymmetric nature of CG traffic (player’s
commands in one direction and multimedia flow in the other),
which distinguishes it from XR/AR traffic (both directions
are multimedia) [21]. In Step 3, the flow is classified into
one of the categories: AR, CG, or others. Step 4 advances
this classification by examining and confirming the UL and
DL directions by observing the IP address, transport proto-
cols (TCP/UDP), and port numbers of the server considering
that these data are well-known and determined. This step
is considered based on the 3GPP network traffic model for
VR/AR/CG [15]. The final step, Step 5, consolidates these
insights to make a definitive decision, thereby enhancing the
algorithm’s accuracy and reliability in identifying between
AR, CG, and other forms of network traffic, streamlining the
methodology for this investigation.



C. Dataset for model training

A precisely labeled dataset is crucial for ML-based AR and
CG classification, ensuring the model trains on accurate data
for reliable predictions. Three essential datasets related to AR,
CG, and others are needed for training.
AR Dataset. Despite the growing interest in AR, the lack of
publicly available datasets specifically tailored for AR research
poses a significant challenge, particularly in the area of AR
network traffic classification. A viable approach to generating
network traffic datasets for AR involves utilizing statistical
distributions, e.g. Johnson, Poisson, Normal, and Exponential
distributions. Among many existing statistical models, the
Johnson SU distribution model stands out [23]. This model,
which includes parameters for Location (Γ), Scale (σ), Shape-
A (a), and Shape-B (b) as proposed in [23], has been shown
to closely match XR traffic and has been adopted for model
training. Despite evidence confirming the model’s ability to
replicate real-world XR traffic [23], we further validate its
effectiveness by testing it against pre-collected AR-specific
data mentioned in [29]. This step ensures the model’s accuracy
from a data perspective.

Moreover, leveraging the similarity between VR and AR
network traffic in DL as outlined in the 3GPP specifica-
tions [15] and XR traffic characteristics [22], we extend our
training to include publicly available VR datasets [30], with
additional VR datasets [31, 32] utilized for DL testing of
AR traffic. This approach enhances our model’s robustness
in accurately classifying AR network traffic.
CG & Other Dataset. The dataset for CG traffic, available
in both PCAP and CSV formats, is documented in [21].
This dataset has been previously employed for classifying
traffic into CG or Non-CG categories as detailed in [21].
Additionally, the Non-CG portion of this dataset serves to
represent other types of traffic in our analysis.

We process three distinct datasets—each representing a
specific class (AR, CG, or others)—sourced from PCAP or
CSV files. We extract relevant features from these datasets
and compile them into separate, newly created CSV files,
categorically labeled according to their respective classes.
These labeled datasets are then merged and their samples are
shuffled to prepare for model training. For the training phase,
90% of the combined dataset is utilized, while the remaining
10% is set aside for evaluation purposes.

D. Pre-processing

In this study, given the scarcity of datasets for AR and CG
network traffic, we employed two approaches to prepare our
training dataset: (a) generating data using the statistical model
from [23], and (b) extracting features from existing PCAP or
CSV files. We utilized Python and the Scapy package to parse
PCAP files, while also leveraging Python to process features
from CSV files2. In the PCAP files, we utilize packet data,
e.g., source and destination IPs, source and destination ports,
and transport protocol to identify network flows. Additionally,

2https://github.com/dcomp-leris/XR-AR-NTC.git
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we use timestamps and packet lengths to extract the key
features, IPI, FS, and IFI, as outlined in Eq. (1), (2), and (3),
respectively. Extracting the FS from existing datasets presented
challenges due to the occasional absence of the RTP header
or the application not utilizing RTP. To overcome this, we
adopted an estimation algorithm to determine FS from UDP
packets, which are likely fragmented to fit the Maximum
Transmission Unit (MTU) constraints. This approach assumes
that a series of fully utilized UDP packets is followed by a
shorter packet, forming a recognizable pattern. By analyzing
the timing and length of received UDP packets, we accurately
estimated FS, as illustrated in Fig. 1.

Unlike traditional methods that identify a frame’s start with
the RTP Marker flag, our approach focuses on pinpointing a
frame’s ending packet. We calculate the IFI using Eq. (1),
which can either be the time difference between the end
packets of two successive frames (indicated by a red arrow in
Fig. 1). This technique offers a reliable means of estimating
frame characteristics in the absence of RTP data. Fig. 1
demonstrates that the start and end of a frame are identifiable
by the RTP Marker header and drop packet size estimation,
respectively, with IFI measured by blue and red arrows. The
CSV dataset files, e.g., [29], provide details including time,
source and destination IPs, packet length, and the header and
info fields, which contain source and destination ports along
with payload length. From these datasets, we extract IPI, FS,
and IFI.

For model training, we methodically organize, label, merge,
and shuffle the samples across datasets. The training dataset
contains 1200 AR samples, 128 CG samples, and 900 samples
belonging to other applications. While the AR dataset benefits
from augmentation via statistical models, the datasets for
CG and other applications face limitations, posing a risk of
imbalance. This could unfairly tilt the ML model towards over-
represented classes. To counteract this, we adopt a weighted
class strategy to preserve dataset balance and guarantee im-
partiality among all categories.

https://github.com/dcomp-leris/XR-AR-NTC.git


E. ML training algorithm selection

In this study, DT and RF with selected features namely
IPI, IFI, and FS are considered to train the model to satisfy
the future hardware requirements [19, 21, 28, 33]. In this
implementation, we use Python programming language with
Scikit-learn, Pandas, and Matplotlib packages. We utilize the
DT classifier for its clear interpretability and strong per-
formance with categorical data, which is further enhanced
by its adaptability to programmable hardware3. Additionally,
we employ RF, an ensemble of DTs where decisions are
aggregated through voting, offering improved classification
accuracy. The deployment of both DT and RF models benefits
from straightforward hardware implementation [21, 28, 33].
To train our model, we meticulously prepared three datasets
by first loading and labeling them. We then combined and
shuffled these datasets to ensure that the data order does not
introduce biases, which is vital for preventing the model from
inadvertently learning sequence patterns that could skew its
predictions.

Our methodology involves training the DT model with
both ‘Gini’ and ‘Entropy’ criteria to gauge their effectiveness
in handling impurities in tree nodes. Despite ‘Gini’s’ speed
and resilience to imbalanced datasets, ‘Entropy’ demonstrated
superior accuracy for multi-class classification in our con-
text [34], prompting its selection despite the computational
considerations. To counteract dataset imbalance, we adjusted
class weights inversely proportional to the class sample sizes,
ensuring a balanced model training approach. The model un-
derwent training with seven possible combinations of three key
features, IPI, FS, and IFI, to identify the most relevant feature
set based on True Positive (TP) and True Negative (TN) rates
for AR, CG, and other classes. Ultimately, the combination
yielding the highest classification accuracy was selected for
the final model, underscoring our commitment to optimizing
performance.

V. HYPERPARAMETERS TUNING & FEATURE ANALYSIS

A. DT & RF hyperparameters

To enhance the performance of the classification models, we
fine-tune the hyperparameters of the DT and RF algorithms.
Various techniques for identifying optimal hyperparameters
include Grid Search, Random Search, Bayesian Optimization,
Gradient-based Optimization, and Evolutionary Algorithms.
Although Grid Search is resource-intensive, we selected it for
optimizing our DT and RF models due to its effectiveness
and the manageable scope of our search space. Details of the
search space and outcomes are documented in Table I.

In this study, we focus on key hyperparameters for the
DT and RF models that are crucial for managing model
complexity and preventing overfitting, without imposing any
constraints. While hardware deployment of these optimized
models is inherently limited by resource constraints such as
computation and memory, potentially affecting performance,

3The proposed models are intended to be implemented and deployed in
hardware, e.g., Tofino switches or SmartNICs in the near future.

TABLE I: DT and RF Hyperparameters & Search Space
Parameters DT-UL RF-UL DT-DL RF-DL Search Range
max depth 20 20 None 20 [None, 10-50]
min samples leaf 1 1 2 1 [1-10]
min samples split 5 2 5 2 [2-20]
max features ‘Sqrt’ ‘Sqrt’ ‘Sqrt’ ‘Sqrt’ [‘Auto’, ‘Sqrt’]
criterion ’Entropy’ ‘Entropy’ ‘Entropy’ ‘Entropy’ [‘Entropy’, ‘Gini’]
n estimators - 100 - 200 [10-300]

the examination of these limitations is beyond the scope of
our current research.

Table I reveals that setting ‘None’ as the max_depth
for the DT in DL (DT-DL) indicates the necessity of
deeper trees to model the complex relationships within the
data. The smaller values for min_samples_leaf and
min_samples_split suggest the dataset is sufficiently
large to support detailed segmentation without risking over-
fitting. Variations in these parameters between UL and DL
data may reflect differing noise levels or variability, neces-
sitating tailored tree growth criteria. The choice of ‘sqrt’
for max_features across models implies a broad feature
set, where feature reduction aids in avoiding overfitting and
enhancing computational efficiency. The distinct approaches
for UL and DL models indicate unique data characteristics
that require bespoke modeling strategies. To ensure robustness
against overfitting and uniform training quality, 10-fold cross-
validation for DT and 5-fold for RF are utilized. The effective
parameters are the important part of hyperparameters for
classification which are discussed in the next subsection.

B. Features effectiveness analysis

To examine the model, we use TP and TN metrics. These
metrics require labeled data to measure. TP measures that
the network traffic which was classified into AR class by the
model belongs to AR. On the other hand, TN measures that the
network traffic that was classified as non-AR does not belong
to AR. This examination is done for different combinations of
features while considering three classes (AR, CG, and others)
separately. The results are shown in Fig 2. Analysis from
Fig. 2a and Fig. 2b suggests that the accuracy of DL and
UL traffic classification using DT heavily relies on the chosen
features. Specifically, ‘IPI’, ‘FS’, and ‘IFI’ together yield high
TP rates for AR traffic in DL, underscoring their effectiveness.
Yet, this combination doesn’t equally improve TN rates for
other classes, hinting at a potential trade-off between class-
specific detection and overall accuracy. Simpler feature sets,
especially those including ‘FS’, provide more balanced TP and
TN rates, indicating better generalization.

For UL classification, ‘FS’ is pivotal for high TP rates in
both AR and CG traffic, but it does not guarantee high TN
rates, emphasizing the importance of using a diverse feature
set for accurate ‘Others’ class identification. The ‘IPI’, ‘FS’,
and ‘IFI’ combo is recommended for balanced TP and TN
rates in UL by DT. RF model in DL, as shown in Fig. 2c,
achieves consistent performance across classes with ‘FS’ and
‘IFI’, effectively identifying AR traffic while maintaining solid
TN rates for non-CG and ‘Others’.
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Fig. 2: TP & TN of DT & RF algorithms for different feature combinations.

In UL classification (Fig. 2d), RF models demonstrate that
‘FS’ is crucial for high TP rates in CG traffic, with a mix of
‘FS’, ‘IFI’, and ‘IPI’ optimizing classification of the ‘Others’
category, indicating that a multifaceted feature approach boosts
classification efficacy. Overall, ‘FS’ emerges as a key factor in
classifying AR, CG, and ‘Others’ in both DT and RF models.
However, its efficacy is maximized when combined with ‘IFI’
and ‘IPI’, offering the best balance of TP and TN rates across
UL and DL classifications, despite variable trends observed.

VI. AR & CG NETWORK TRAFFIC DATASET

In this section, we detail the collection process for our AR
and CG network traffic dataset, which is available in PCAP
file format. Towards research reproducibility, the dataset was
captured using Tshark as illustrated in Fig. 3.

A. AR dataset

To effectively train, test, and enhance the ML model for AR
application traffic classification, the dataset derived from AR
glasses traffic is crucial due to varying resolutions and refresh
rates among different AR glasses. Given the high cost of AR
glasses and considering that frame size and refresh frequency
are key features, we propose generating traffic based on these
attributes. This approach simplifies the process and initiates
a comprehensive AR network traffic dataset, contributing to
research in this field. For traffic generation and collection, we
are inspired by ITU-T standard for AR [35] and utilized two
wireless connected computers through an Access Point (AP),
as depicted in Fig. 3a, with hardware specifications detailed
in Table II. We leverage seven scene video frames datasets

TABLE II: Specifications of devices

Device Features Model

PC1

CPU Intel(R) CoreTM i7-5500U
RAM 12 GB
Storage 1 TB
Wi-Fi Wi-Fi 4E (802.11n)
OS Microsoft Windows 10 Pro

PC2

CPU Intel CoreTM i7-13700T
RAM 16 GB
Storage 500 GB
Wi-Fi Wi-Fi 6E (802.11ax)
OS Linux Ubuntu 22.04.3 LTS

AP Standard 802.11a/b/g
Speed 600 Mbps - 2400 Mbps (2.4GHz-5GHz)

from Microsoft4 and the FFmpeg tool to create videos at
specific resolutions and refresh rates, as outlined in Table III,
simulating the perspective of a person wearing AR glasses.
In this scenario, the glasses capture scenes, encoding frames
in H.264 and transmitting them to an edge server, which
processes and returns the video at compatible resolutions for
the glasses. The focus here is on analyzing AR network
traffic; thus, the latency and processing overhead at the edge
server (e.g. rendering) are not considered. We design separate
UL and DL streams to execute this scenario, detailed in
Table III, reflecting the glasses’ specifications. Video streams
are created and encoded in H.264 using Gstreamer tools, based
on the profiles specified in Table III, and transmitted over Wi-
Fi using RTP. On the receiving end, GStreamer5 processes the

4https://www.microsoft.com/en-us/research/project/rgb-d-dataset-7-scenes/
5https://gstreamer.freedesktop.org/

https://www.microsoft.com/en-us/research/project/rgb-d-dataset-7-scenes/
https://gstreamer.freedesktop.org/


TABLE III: Streams Information for Generating AR Dataset

DL/UL Name Resolution fps

UL

Stream1[23] 1280 x 480 60
Stream2 [4, 5, 8] 1920 x 1080 90
Stream3[6] 1440 x 936 60
Stream4[7] 2064 x 2208 120
Stram 5[7] 1832 x 1920 120

DL Stream6 [23] 3840 x 1920 72 or 90

(a) AR Topology.

(b) CG Topology.

Fig. 3: Network topology for AR & CG traffic collection where
dash lines indicate wireless and solid lines wired connectivity.

stream without saving or displaying it to minimize overhead.
Network traffic is captured using Tshark and saved as PCAPs.

The experiment was run two times for each stream and each
run took 10 min, totaling a 120-minute long collected AR
network traffic dataset in PCAP format as publicly available.

B. Cloud Gaming

The CG dataset from [21] was expanded by incorporating
data collection from various games on Xbox Cloud Gaming,
including Forza Horizon 5, Fortnite, and Mortal Kombat 11,
each played for 15. The setup, depicted in Fig 3b, involves
a PC (Intel(R) Core(TM) i5-4210U CPU @ 1.70GHz, 4GB
RAM) for gaming and a Raspberry Pi wired to the Internet
and acting as the Access Point (AP) for the PC wireless
connectivity, where traffic is captured with Tshark, resulting
in a total of 90 minutes of gameplay PCAP data6.

6We are also collecting In-band Network Telemetry (INT) such as queue
occupancy in this device. This data will be made available soon as well.

TABLE IV: Pre-existing Dataset (DS) for Testing the Models

ID Name App Ref. Files DL/UL
1 XR traffic AR [23] Model UL,DL
2 AR traffic AR [17] CSV DL
3 VR DS AR [31, 32] PCAP, CSV DL
4 CG DS CG [21] PCAP UL,DL
5 Non-AR/Non-CG Other [21] PCAP UL,DL

TABLE V: DT & RF Model Performance

Model Datasets Accuracy Precision Recall F1-score

DT-UL
Training Eval 96.4 96.6 96.4 96.4

Pre-existing DS 94.8 95.5 94.87 94.84
Collected DS 95.27 96.21 95.27 95.42

DT-DL
Training Eval 95.00 95.1 95.00 95.00

Pre-existing DS 90.74 89.37 90.74 89.58
Collected DS 94.87 94.87 94.87 94.87

RF-UL
Training Eval 95.4 95.6 95.4 95.4

Pre-existing DS 94.87 94.87 94.87 94.87
Collected DS 94.75 94.09 94.75 94.81

RF-DL
Training Eval 95.1 95.5 95.1 95.00

Pre-existing DS 88.40 90.78 88.40 87.93
Collected DS 91.14 89.24 91.14 89.68

VII. MODEL EVALUATION

The proposed DT and RF classification models’ perfor-
mance is evaluated using accuracy, precision, recall, and f1-
score metrics. To test the model, we use the dataset collected
from pre-existing datasets as mentioned in Table IV whose
samples are unseen for the dataset we trained our model.
Furthermore, we test the model with the dataset created in
this research (Section VI) for AR and CG as well.

The datasets are merged and the samples are shuffled to
create a comprehensive test dataset for model evaluation. This
evaluation is conducted in three phases: (a) assessing the
model’s performance during the training phase which used
10% of the dataset, (b) evaluating the model using pre-existing
datasets as mentioned in Table IV, and (c) testing the model
against datasets specifically collected in this research at our
lab. The outcomes of these evaluations are detailed in Table V.

Table V reveals the DT-UL model’s high efficiency,
achieving top accuracy (96.4%), precision (96.6%), and F1-
score (96.4%) in the Training Evaluation dataset. This high-
lights DT-UL’s strong performance in classifying training data
and maintaining effectiveness across both existing and new
datasets. In contrast, the Decision Tree Downlink (DT-DL)
model, while slightly less effective than DT-UL, delivers
notable results, particularly with training and using our lab
datasets. However, it experiences a drop in precision (89.37%)
and F1-score (89.58%) with the existing dataset, indicating
potential difficulties in consistent prediction across diverse
datasets. The Random Forest Uplink (RF-UL) model demon-
strates consistent and strong performance, closely matching
DT-UL in all tests, suggesting its dependability across different
datasets. The Random Forest Downlink (RF-DL) model, how-
ever, shows reduced performance in the pre-existing dataset,
with lower accuracy (88.40%), precision (90.78%), and F1-
score (87.93%), hinting at possible overfitting or reduced
generalizability.

The classification performance results suggest that the



observed equivalence between accuracy and recall can be
attributed to the weighted multi-class approach, which effec-
tively normalizes class imbalance.

The evaluation results illuminate that while Decision
Trees (DTs) manifest high performance, they might ex-
hibit sensitivity to dataset attributes. In contrast, Random
Forests (RFs), benefiting from their ensemble approach,
demonstrate resilience and constancy across diverse datasets.
Nonetheless, meticulous calibration is essential to forestall
overfitting, as evidenced by RF-DL’s performance with labeled
training data. This analysis accentuates the criticality of proper
model selection and adjustment, tailored to the datasets’
unique demands and features, to improve the classification
effectiveness.

VIII. DISCUSSION

AR traffic dataset scarcity. In this study, we addressed
the AR traffic dataset scarcity by leveraging a statistical
model [23] to create an AR training dataset for our DT
and RF models. We enhanced our dataset by incorporating
real VR network traffic from [30], exploiting the similarities
between AR and VR in DL scenarios as indicated in [15,
22], and further evaluated our models’ DL performance using
datasets from [31, 32]. Our comprehensive testing across
both existing and newly developed datasets underscored our
models’ capability to accurately classify emerging network
traffic, marking a pivotal step forward in AR network traffic
classification research.
Performance of DT and RF. In the experiment results,
the DT and RF models demonstrated a notable decrease
in classification performance when applied to pre-existing
datasets. Upon further investigation into the limitations of
these models, it was discovered that DT and RF achieved a
classification accuracy of 95.36% and 96.35% respectively on
instances from these datasets. A critical observation was made
regarding the AR dataset collected in a local host environment,
as mentioned in [29], which did not account for network
conditions. Consequently, this oversight led to inaccuracies in
classification using the ‘IPI’ feature, impacting the expected
performance.
Overfitting. Cross-validation and hyperparameter tuning were
employed to mitigate overfitting, a potential issue given the
limited size of the datasets. Additionally, a combination of
statistical modeling and real data collection was utilized to
enhance the models’ generalizability. RF models, especially
in the UL (RF-UL) scenario, demonstrated superior stability
across various datasets compared to DT models, likely due
to RF’s inherent ability to reduce overfitting by averaging
predictions from multiple DTs. The evaluation of models
using unseen datasets revealed high accuracy and f1-scores,
suggesting successful generalization beyond mere training data
memorization.
Accuracy and Reliability. Confidence intervals for DT and
RF models in classifying AR, CG, and other network traffic
types affirm their accuracy and reliability across both UL and

DL directions. Specifically, DT models achieve a 95% confi-
dence interval ranging from 95.8% to 99.2%, while RF models
show a slightly higher range from 96.5% to 99.4%. Such
tight confidence intervals highlight the models’ robustness and
precision in classifying diverse datasets. Evaluation using both
pre-existing and newly collected datasets validates the models’
anticipated performance, positioning them as effective tools for
network traffic classification.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced DT and RF models to classify
network traffic into AR, CG, and other application categories.
These models were evaluated using both pre-existing and
newly collected datasets to validate their efficacy in distin-
guishing AR and CG traffic. However, the potential for bias
and overfitting remains a concern due to the limited diversity
of the training datasets, highlighting the need for a more
extensive collection of AR and CG data to enhance model
generalization. To address this, we have compiled and made a
comprehensive AR and CG traffic dataset available.

While the models developed so far demonstrated high accu-
racy in traffic classification, deploying them in real-world sce-
narios may present challenges related to hardware constraints.
Our next steps involve deploying the models on programmable
network equipment including Tofino switches, SmartNICs, and
DPUs. We will also increase the size of our data sets and
make them available along with INT metrics (e.g., queue
occupancy, queue delay, and others) collected from a 5G
setup and experiment with real-world traffic scenarios for
varying AR glasses and applications. We suspect that the
differences in terms of flow patterns may vary significantly
depending on the AR manufacturer as well as the specific AR
application and user behavior. We are also calling for a joint
effort from the community to make publicly available rich
datasets for VR/AR applications for a better understanding
of commercial applications under real networking conditions
to support impact research in terms of novel classification
models, QoE estimation as well as orchestration loops to
improve QoE/QoS.
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[9] D. G. Morı́n, P. Pérez, and A. G. Armada. “Toward
the distributed implementation of immersive augmented
reality architectures on 5G networks”. In: IEEE Com-
munications Magazine 60.2 (2022), pp. 46–52.

[10] Ericsson Technology Review, [Online]. Available: https:
/ / www . ericsson . com / en / reports - and - papers /
ericsson - technology - review / articles / future - network -
requirements-for-xr-apps, [Accessed: 2024-01-12].

[11] Nokia, [Online]. Available: https : / / www. nokia . com /
blog/5g-advanced-will-power-mobile-xr-experiences-
virtually-anywhere, [Accessed: 2024-01-12].

[12] Qualcomm, [Online]. Available: https : / / www .
qualcomm . com / news / onq / 2022 / 11 / enabling - the -
metaverse-with-5g, [Accessed: 2024-01-12].

[13] ZTE Technologies, [Online]. Available: https : / /www.
zte .com.cn/global /about /magazine /zte - technologies /
2023 /1 - en /3 / zte - x - edge - solution -- diversifying - xr-
commercial-scenarios.html, [Accessed: 2024-01-12].

[14] 5G architecture support for XR and media services.
https://www.3gpp.org/technologies/xr- sa2. Accessed:
2024-01-12.

[15] 3GPP Specifications and Technologies, Spec No:38.838.
https://portal.3gpp.org. Accessed: 2024-01-12.

[16] https://www.pewresearch.org/internet/2022/06/30/the-
metaverse-in-2040. Accessed: 2024-01-12.

[17] P. Schulz et al. “Analysis and Modeling of Down-
link Traffic in Cloud-Rendering Architectures for Aug-
mented Reality”. In: 2021 IEEE 4th 5G World Forum
(5GWF). Oct. 2021, pp. 188–193.

[18] Ahmad Azab et al. “Network traffic classification: Tech-
niques, datasets, and challenges”. In: Digital Commu-
nications and Networks (2022). ISSN: 2352-8648. DOI:
https://doi.org/10.1016/j.dcan.2022.09.009.

[19] Qianqian Wu et al. “P4SQA: A P4 Switch-based QoS
Assurance Mechanism for SDN”. In: IEEE Transactions
on Network and Service Management (2023).

[20] N. Shah. The challenges of inspecting encrypted net-
work traffic. Fortinet [Internet]. Accessed: 2024-01-12.
2020. URL: https : / /www.fortinet .com/blog/ industry-
trends / keeping - up - with - performance - demands - of -
encrypted-web-traffic.

[21] P. Graff et al. “Efficient Identification of Cloud Gaming
Traffic at the Edge”. In: NOMS 2023-2023 IEEE/IFIP
Network Operations and Management Symposium. May
2023, pp. 1–10.

[22] A. Alnajim et al. Traffic Characteristics of Extended
Reality. arXiv preprint arXiv:2304.07908. 2023.

[23] D. Gonzalez Morin et al. An eXtended Reality Of-
floading IP Traffic Dataset and Models. arXiv e-prints,
arXiv-2301. 2023.

[24] LS on Status Update on XR Traffic. 3GPP R1-2104023.
Accessed: 2024-02-06.

[25] FS XRTRaffic: Permanent document, v0.6.0. 3GPP S4-
210614. Accessed: 2024-02-06.

[26] LS on XR-Traffic Models. 3GPP R1-2101765. Accessed:
2024-02-06.

[27] T. Shapira and Y. Shavitt. “FlowPic: A generic repre-
sentation for encrypted traffic classification and applica-
tions identification”. In: IEEE Transactions on Network
and Service Management 18.2 (2021), pp. 1218–1232.

[28] Aristide Tanyi-Jong Akem, Guillaume Fraysse, Marco
Fiore, et al. “Encrypted Traffic Classification at Line
Rate in Programmable Switches with Machine Learn-
ing”. In: IEEE/IFIP Network Operations and Manage-
ment Symposium. 2024.

[29] Andreas Traßl, Nick Schwarzenberg, and Philipp
Schulz. Augmented Reality Streams for Cloud-Based
Rendering. IEEE Dataport. 2021. URL: https://dx.doi.
org/10.21227/jjan-tj96.

[30] Seyedmohammad Salehi. Motivation: Video rendering
on the Oculus Quest vs. Edge server. https : / / www.
eecis.udel.edu/∼salehi/vr.html. Accessed: 2024-01-12.

[31] M. Polupanova. “VR Traffic Dataset on Broad Range
of End-User Activities”. In: Data 8.8 (2023), p. 132.
DOI: 10.3390/data8080132. URL: https: / /doi .org/10.
3390/data8080132.

[32] Sihao Zhao et al. “Virtual Reality Gaming on the Cloud:
A Reality Check”. In: IEEE Global Communications
Conference (GLOBECOM 2021). Madrid, Spain, 2021.

[33] Shie-Yuan Wang and Ying-Hua Wu. “Supporting Large
Random Forests in the Pipelines of a Hardware Switch
to Classify Packets at 100 Gbps Line Rate”. In: IEEE
Access (2023).

[34] P. E. Hart, D. G. Stork, and R. O. Duda. Pattern
classification. Hoboken: Wiley, 2000.

[35] International Telecommunication Union. Testing proce-
dures of augmented reality applications. ITU-T Recom-
mendation Q.4066. Available: https://www.itu.int/rec/T-
REC-Q.4066-202009-I/en. International Telecommuni-
cation Union, Sept. 2020.

https://www.xreal.com/air2
https://www.xreal.com/air2
https://ar.rokid.com
https://ar.rokid.com
http://www.microsoft.com/en-us/hololens/hardware#document-experiences
http://www.microsoft.com/en-us/hololens/hardware#document-experiences
https://www.meta.com
https://varjo.com/products/varjo-xr-3
https://varjo.com/products/varjo-xr-3
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/future-network-requirements-for-xr-apps
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/future-network-requirements-for-xr-apps
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/future-network-requirements-for-xr-apps
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/future-network-requirements-for-xr-apps
https://www.nokia.com/blog/5g-advanced-will-power-mobile-xr-experiences-virtually-anywhere
https://www.nokia.com/blog/5g-advanced-will-power-mobile-xr-experiences-virtually-anywhere
https://www.nokia.com/blog/5g-advanced-will-power-mobile-xr-experiences-virtually-anywhere
https://www.qualcomm.com/news/onq/2022/11/enabling-the-metaverse-with-5g
https://www.qualcomm.com/news/onq/2022/11/enabling-the-metaverse-with-5g
https://www.qualcomm.com/news/onq/2022/11/enabling-the-metaverse-with-5g
https://www.zte.com.cn/global/about/magazine/zte-technologies/2023/1-en/3/zte-x-edge-solution--diversifying-xr-commercial-scenarios.html
https://www.zte.com.cn/global/about/magazine/zte-technologies/2023/1-en/3/zte-x-edge-solution--diversifying-xr-commercial-scenarios.html
https://www.zte.com.cn/global/about/magazine/zte-technologies/2023/1-en/3/zte-x-edge-solution--diversifying-xr-commercial-scenarios.html
https://www.zte.com.cn/global/about/magazine/zte-technologies/2023/1-en/3/zte-x-edge-solution--diversifying-xr-commercial-scenarios.html
https://www.3gpp.org/technologies/xr-sa2
https://portal.3gpp.org
https://www.pewresearch.org/internet/2022/06/30/the-metaverse-in-2040
https://www.pewresearch.org/internet/2022/06/30/the-metaverse-in-2040
https://doi.org/https://doi.org/10.1016/j.dcan.2022.09.009
https://www.fortinet.com/blog/industry-trends/keeping-up-with-performance-demands-of-encrypted-web-traffic
https://www.fortinet.com/blog/industry-trends/keeping-up-with-performance-demands-of-encrypted-web-traffic
https://www.fortinet.com/blog/industry-trends/keeping-up-with-performance-demands-of-encrypted-web-traffic
https://dx.doi.org/10.21227/jjan-tj96
https://dx.doi.org/10.21227/jjan-tj96
https://www.eecis.udel.edu/~salehi/vr.html
https://www.eecis.udel.edu/~salehi/vr.html
https://doi.org/10.3390/data8080132
https://doi.org/10.3390/data8080132
https://doi.org/10.3390/data8080132

	Introduction
	Background
	Related Work
	Methodology
	Feature selection
	General Algorithm
	Dataset for model training
	Pre-processing
	ML training algorithm selection

	Hyperparameters Tuning & Feature Analysis
	DT & RF hyperparameters
	Features effectiveness analysis

	AR & CG Network Traffic Dataset
	AR dataset
	Cloud Gaming

	Model Evaluation
	Discussion
	Conclusions and Future Work

