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Abstract—The emergence of quantum computing and related
technologies presents opportunities for enhancing network se-
curity. The transition towards quantum computational power
paves the way for creating strategies to mitigate the constantly
advancing threats to network integrity. In response to this
technological advancement, our research presents QML-IDS, a
novel Intrusion Detection System (IDS) that combines quantum
and classical computing techniques. QML-IDS employs Quantum
Machine Learning (QML) methodologies to analyze network pat-
terns and detect attack activities. Through extensive experimental
tests on publicly available datasets, we show that QML-IDS is
effective at attack detection and performs well in binary and
multiclass classification tasks. Our findings reveal that QML-IDS
outperforms classical Machine Learning methods, demonstrating
the promise of quantum-enhanced cybersecurity solutions for the
age of quantum utility.

Index Terms—Quantum Machine Learning, Network Security,
Quantum Network.

I. INTRODUCTION

Recent advances in quantum computing signify a main
shift towards the era of quantum utility, highlighting a cru-
cial phase in the evolution of quantum technologies where
quantum computers now outperform classical methods in solv-
ing complex problems efficiently and accurately [1]. Despite
not yet achieving quantum supremacy—the milestone where
quantum computing overtakes classical computing in solving
certain tasks within practical timeframes—these developments
are crucial strides toward enabling robust applications across
various research domains. Within this framework, quantum
technologies are poised to revolutionize network security by
integrating with Intrusion Detection Systems (IDS) through
Quantum Machine Learning (QML) techniques. This integra-
tion promises more precise detection of network anomalies
and the capability to analyze vast datasets, addressing the
dynamic challenges of cybersecurity and marking a significant
advancement in safeguarding digital infrastructures in the
rapidly evolving technological landscape.

A significant challenge is related to the current capabilities
of quantum devices, known as Noisy Intermediate-Scale Quan-
tum (NISQ) devices [2]. These limitations include restrictions
on the number of qubits (quantum bits) available, the com-
plexity of the quantum circuits that can be implemented (depth
and available quantum logic gates), and the ability to maintain
quantum coherence over time (due to noise and the inherent
nature of qubits) [3]. Moreover, the lack of robust error
correction mechanisms in NISQ systems also represents a

significant obstacle [4]. Therefore, any proposal for a quantum
IDS must take these factors into account to ensure its effective
applicability in the current quantum computing landscape [2].

In this paper, we propose QML-IDS, a Quantum Machine
Learning-Based Attack Detection System. The primary goal
is to create an adaptable system for use with NISQ devices,
overcoming the inherent limitations of current quantum com-
puting. To achieve this goal, our approach is based on hybrid
QML techniques, which leverage the capabilities of both
classical and quantum computing simultaneously. To evaluate
the performance of QML-IDS, a series of experiments were
conducted using publicly available network security datasets.
Three QML methods in our system were compared in terms
of attack detection (binary classification) and identification
of specific attacks (multiclass classification). Furthermore, the
results obtained with QML approaches were compared with
classical Machine Learning (ML) methods. The experimental
results provide empirical evidence of the effectiveness of QML
techniques in enhancing network attack detection capabilities
and point to the feasibility of implementation in NISQ sys-
tems. The main contributions of this work are:

1) Development of QML-IDS, a QML-based network at-
tack detection system that utilizes both quantum and
classical computing in a hybrid manner.

2) Presentation of the operation of QML-IDS through the
application of three distinct QML techniques, followed
by an evaluation of the performance of each approach.

3) Implementation of QML-IDS in NISQ systems and
evaluation of different quantum circuit configurations on
system performance.

II. HYBRID QUANTUM MACHINE LEARNING

Quantum Machine Learning can be understood as a set
of techniques that combine principles of quantum comput-
ing (such as superposition, interference, and entanglement)
with Machine Learning techniques to perform tasks like classi-
fication, regression, and clustering of data [5]. In this work, our
focus is on hybrid QML approaches, which use both quantum
and classical computing to create learning models.

A. Variational Quantum Classifier (VQC)

The Variational Quantum Classifier (VQC) [6] is a hybrid
Quantum Machine Learning algorithm that leverages parame-
terized quantum circuits combined with classical optimization
techniques for classification tasks. It operates by encoding
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Fig. 1: Examples of Quantum Circuits used in QML.

classical input data into quantum states through a process
known as a feature map (Fig 1.a), transforming these states
within a quantum circuit whose parameters are iteratively ad-
justed based on training data to delineate the optimal decision
boundary between classes. This encoding and manipulation of
quantum states allow the VQC to exploit the quantum me-
chanical properties of superposition and entanglement, aiming
to achieve superior classification performance over classical
algorithms in certain scenarios. Thus, the specific choice of
the feature map influences the VQC’s ability to represent the
important features of the input data, directly impacting the
performance of the generated model.

The core of the VQC involves three main steps: encoding
the input data into quantum states, processing these states
through a variational quantum circuit (or Ansatz, Fig 1.b), and
optimizing the circuit parameters using classical optimization
techniques. Initially, input data are mapped onto a high-
dimensional quantum space using a feature map, which is a
unitary operation that prepares the quantum states representing
the data. The variational circuit then applies a series of
quantum gates, controlled by adjustable parameters, to these
states, effectively learning the underlying data patterns.

The final stage involves refining the model through a
classical optimization process, where a classical optimizer
fine-tunes the Ansatz parameters to minimize a cost function.
This iterative adjustment aims to identify the optimal circuit
configuration that best delineates the target classes. Through
this process, the VQC seeks to harness the computational
advantages of quantum computing, potentially offering new
capabilities in the field of machine learning and data classifi-
cation.

B. Quantum Support Vector Machines (QSVM)

The Quantum Kernel Support Vector Machine (QSVM)
[7] represents a quantum-enhanced version of the classical
Support Vector Machine (SVM) algorithm, leveraging the
principles of quantum computing to map input data into a
high-dimensional quantum feature space. This quantum feature
space potentially allows for more effective separation of data
that are not linearly separable in their original space. The
process involves the construction of a quantum kernel, which
is a measure of similarity between pairs of data points in
this quantum space. This kernel is generated through quantum
transformations applied to the quantum states representing the

input data, enabling the QSVM to exploit the computational
advantages of quantum mechanics for complex classification
tasks.

During the training phase, QSVM utilizes a quantum circuit
to project the training examples into the quantum feature
space, where it computes the kernel matrix that captures the
intricate relationships between these examples. The algorithm
then identifies support vectors, which are key data points that
define the optimal separation hyperplane in the quantum fea-
ture space. These support vectors and the kernel matrix guide
the construction of a hyperplane that maximizes the margin
between different classes, mirroring the objective of classical
SVM but within a quantum computational framework.

In the testing phase, new, unlabeled examples are similarly
mapped into the quantum space, and their classification is
determined based on their position relative to the quantum
hyperplane. This approach allows QSVM to classify data by
effectively utilizing quantum operations to handle datasets that
challenge traditional classification methods. The effectiveness
of QSVM heavily relies on the choice of the feature map
and the design of the quantum kernel, which are critical
for capturing the essential characteristics of the data in the
quantum feature space, thereby enabling the algorithm to
achieve high classification accuracy.

C. Quantum Convolutional Neural Network (QCNN)

The Quantum Convolutional Neural Network (QCNN)
[8] is an adaptation of classical convolutional neural net-
works (CNNs). The architecture of QCNNs (Fig 1.c) mirrors
that of their classical counterparts, consisting of convolutional
layers, pooling layers, and fully connected layers, albeit im-
plemented with quantum operations. The convolutional layers
in a QCNN are realized through the application of parameter-
ized unitary operations on neighboring pairs of qubits. These
operations are akin to the filters applied in classical CNNs,
designed to detect specific features within the data. However,
unlike classical filters that operate on pixel values, quantum
convolutions manipulate the quantum states of qubits, enabling
the extraction of quantum features.

Following the convolutional layers, QCNNs implement
quantum pooling layers. The objective of pooling in clas-
sical CNNs—to reduce the dimensionality of the data and
retain only the most relevant features—is achieved in QCNNs
through the measurement of a subset of qubits. This measure-
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Fig. 2: Operational flowchart of QML-IDS.

ment effectively reduces the number of qubits in the system,
analogous to the downsampling performed in classical pooling
layers. The choice of which qubits to measure and discard is a
critical aspect of the QCNN architecture, as it determines how
information is condensed and propagated through the network.
Training a QCNN involves adjusting the parameters of the
convolutional and fully connected layers to minimize a loss
function, similar to the process in classical neural networks.
However, due to the quantum nature of the operations, gradient
descent and other optimization techniques must be adapted
for quantum circuits. This often involves the use of classical
optimizers to adjust the quantum parameters based on the
measurement outcomes, effectively creating a hybrid quantum-
classical learning algorithm.

III. RELATED WORK

Several studies have addressed the use of Quantum Machine
Learning [5]. In this section, we highlight works that seek
to utilize QML in the context of network security. Said et
al. (2023) [9] explore the application of a QSVM model to
detect Distributed Denial of Service (DDoS) attacks in smart
micro-grids. The study evaluates the QML model using a
reduced version (by sampling) of the CIC-DDoS2019 dataset
[10], which includes data on both DDoS attacks and normal
network behavior. The results demonstrate the superiority of
the QML model compared to the classical approach, SVM. In
the paper by Gong et al. [11], the application of a Neural
Network (NN) in conjunction with the VQC for network
attack detection is proposed. The authors apply the created
model to a reduced subset of features from the KDD CUP99
dataset [12], incorporating a class balance approach to increase
classification accuracy. Similarly, Kalinin and Krundyshev
[13] propose a QSVM model with NN for network attack
detection. The generated model is applied to a database created
by the authors and compared with other techniques such as
SVM and CNN. These works implemented their solutions
using noiseless quantum computing simulators, which cannot
accurately represent current NISQ systems. In our work, our
proposal is implemented using noisy backends, which more
closely represent current NISQ equipment.

Moreover, Suryotrisongko and Musahi [14] propose a VQC
and a Hybrid Quantum Deep Learning (DL) to detect botnet
domain generation algorithm (DGA) attacks. The Hybrid DL
consists of adding one quantum layer to a NN model. While
the DL model was tested using NISQ devices, the VQC was
not. In [15], the Hybrid Quantum DL is also evaluated in
regard to adversarial attack robustness.

The research contributions presented in this work differ
by presenting a comprehensive analysis of the application of
various QML techniques (VQC, QSVM, and QCNN), both
for detection (binary scenario) and for the identification of
attacks (multiclass scenario). Additionally, our work conducts
tests on three reference datasets in network security, containing
a wide variety of network attacks. Furthermore, unlike the
related studies, we conducted tests in circuits with diverse
optimization levels, incorporating resilience and dynamic de-
coupling, which contributed to the improvement of our results.

IV. QML-IDS: HYBRID QUANTUM MACHINE
LEARNING-BASED ATTACK DETECTION SYSTEM

In this work, we propose a network attack detection system
based on Hybrid Quantum Machine Learning (QML-IDS). The
proposal is to apply Hybrid QML techniques, which use both
quantum and classical computing, to perform network attack
detection. The operation of the proposal is presented in the
flowchart in Figure 2.

QML-IDS begins with network monitoring and data collec-
tion, from which features are extracted. After this, data pre-
processing is performed for normalization, handling missing
values, and other techniques aimed at preparing the data for the
system. Next, the mapping of classical data to quantum states
occurs through the feature map. The Hybrid QML process is
then initiated, with the quantum and classical parts according
to the QML technique. In the case of VQC, a variational
quantum circuit ansatz is generated, whose parameters are ad-
justed by a classical optimizer. For QSVM, a quantum kernel
is generated, which is used to train the classical prediction
model. In the QCNN, the quantum network is generated and
optimized classically.

The final result of the process is a classical output, an
interpretation of the quantum results that is used for the



TABLE I: Hyperparameters of Quantum Models.

Feature Maps Ansatz Optimizer

PauliFeatureMap EfficientSU2 COBYLA
RawFeatureVector ExcitationPreserving ADAM
ZFeatureMap RealAmplitudes SPSA
ZZFeatureMap TwoLocal GradientDescent

Optimization Level Resilience Decoupling

Level 0,1,2,3 Level 0 or 1 0 or 1

generation of attack alerts. Based on the analyses performed,
the system generates attack alerts whenever suspicious patterns
are identified, contributing to network security. It is important
to note that in this approach, other hybrid QML methods can
also be used, respecting the particularities of each method.
QML-IDS can then be implemented partly on a classical
system and partly on a quantum system.

V. EXPERIMENTAL SETUP

To evaluate the proposed system, we conducted a com-
prehensive case study, leveraging three prominent network
security databases: UNSW-NB15 [16], CICIDS17 [17], and
CICIoT2023 [18]. These datasets include both normal and
various types of attack network traffic data and are frequently
utilized for the detection and classification of attacks using
ML techniques. Three classical ML methods were selected
and will serve as a comparison to the quantum counterparts
results: Support Vector Machine (SVM), Convolution Neural
Network (CNN), and Random Forest (RF) as a representative
classifier to compare with VQC, all implemented using the
scikit-learn and TensorFlow frameworks.

To evaluate the performance of the QML-IDS system,
three Quantum Machine Learning models were employed:
VQC, QSVM, and QCNN, which were implemented using
the Qiskit framework. For these models, the specific hyperpa-
rameters used are presented in Table I. We employ four fea-
ture maps from Qiskit (RawFeatureVector, PauliFeatureMap,
ZFeatureMap, ZZFeatureMap) for encoding classical data into
quantum states, alongside four Ansatz and classical optimizers
within the Qiskit framework. The RawFeatureVector offers
a direct mapping of classical data to quantum states, estab-
lishing a baseline. The PauliFeatureMap and ZFeatureMap
utilize quantum gates to simulate Pauli operators and employ
Hadamard and unitary gates for transforming classical inputs
into quantum states, enabling the capture of nonlinear patterns
and facilitating first-order data encoding. The ZZFeatureMap
extends these capabilities by incorporating second-order qubit
interactions for more complex correlation encoding [19].

Addressing the challenge of quantum circuit transpilation
for real quantum hardware, our experiments leverage optimiza-
tion levels from 0 to 3 for circuit adaptation, with each level
introducing increasingly sophisticated optimization strategies,
from basic gate collapsing to advanced techniques like peep-
hole optimization and noise-adaptive qubit mapping. Addition-
ally, we integrate resilience levels and dynamic decoupling to
enhance error resilience, with resilience level 0 offering no

mitigation and level 1 targeting readout errors through Matrix-
free Measurement Mitigation, alongside dynamic decoupling
to reduce environmental interactions, thereby optimizing the
balance between accuracy and processing time in quantum
computations.

VI. RESULTS

A. NISQ Backend Results

In this section, we delve into the performance of QML-
IDS across a variety of NISQ Backend configurations. For
this, six different backends were used, including the noise-
free quantum computing simulator QASM and five real quan-
tum computing environments: IBM CAIRO, IBM KYOTO,
IBM BRISBANE, IBM OSAKA, and IBM SHERBROOKE.
These environments incorporate the specific noise models,
quantum logic gates, and topologies of actual quantum com-
puters, providing a realistic assessment of quantum technolo-
gies in security applications.

To illustrate the obtained results, the performance of three
QML models (VQC, QSVM, QNCC) is presented in Table II,
showcasing their F1 Scores across the mentioned backends for
binary attack detection. The F1 Score is chosen for its balanced
measure of precision and recall, crucial in security contexts
for effectively detecting attacks while minimizing false pos-
itives. The QASM simulator, representing an ideal quantum
computing scenario, consistently shows high F1 Scores across
all databases, highlighting the potential of quantum computing
in enhancing IDS capabilities. However, the focus of this
research is on the performance within real quantum systems,
where noise and operational limitations present substantial
challenges.

Among the real quantum systems, there is a significant
variation in performance, which reflects the impact of each
system’s unique noise model, quantum logic gates, and topol-
ogy. This variation underscores the importance of selecting and
tuning QML models according to the specific characteristics of
the quantum hardware in use. For instance, VQC demonstrates
robust performance on the IBM KYOTO backend for the CI-
CIDS17 dataset, while QSVM shows adaptability with strong
results on IBM OSAKA for the UNSW-NB15 database and
on IBM BRISBANE for the CICIoT2023 database. QNCC, in
particular, stands out with the highest F1 Scores in several con-
figurations, such as on the IBM KYOTO and IBM BRISBANE
backends for the CICIDS17 and CICIoT2023 databases, re-
spectively, showcasing its effectiveness in handling the com-
plexities of real quantum systems.

The results indicate the potential of QML-IDS to leverage
quantum computing for security applications, while also high-
lighting the critical role of hardware-specific considerations in
optimizing performance. The varying results across different
backends and models emphasize the necessity for ongoing
research and development in quantum computing to address
the challenges posed by noise and other physical limitations
in NISQ systems. The best results obtained in each model
and backend combination will be discussed in detail in the
following subsections.



TABLE II: F1 Score of QML on each Backend across three databases (for binary case)

UNSW-NB15 QASM IBM CAIRO IBM KYOTO IBM BRISBANE IBM OSAKA IBM SHERBROOKE

VQC 88.56% 87.91% 88.10 % 85.78% 87.75% 87.31%
QSVM 89.34% 87.90% 86.41% 86.39% 87.90% 86.55%
QNCC 87.45% 86.12% 87.12% 87.32% 87.19% 85.42%

CIC-IDS-17 QASM IBM CAIRO IBM KYOTO IBM BRISBANE IBM OSAKA IBM SHERBROOKE

VQC 95.12% 93.60% 94.78% 92.40% 94.12% 94.00%
QSVM 94.67% 92.92% 94.40% 92.80% 92.15% 94.38%
QNCC 95.88% 93.80% 95.60% 93.40% 94.15% 94.12%

CICIoT2023 QASM IBM CAIRO IBM KYOTO IBM BRISBANE IBM OSAKA IBM SHERBROOKE

VQC 82.55% 78.55% 76.15 % 77.12% 77.02% 78.92%
QSVM 84.22% 79.19% 80.00% 82.40% 80.55% 80.12%
QNCC 87.81% 82.55% 82.56% 82.00% 82.11% 81.93%

TABLE III: F1 score results for the binary classification.

QML UNSW-NB15 CIC-IDS-17 CICIoT2023

VQC 88.10% 94.78% 78.92%
QSVM 87.90% 94.40% 82.40%
QCNN 87.32% 95.60% 82.56%

RF 82.67% 92.45% 71.95%
SVM 82.34% 93.78% 82.7%
CNN 86.72% 93.15% 78.52%

B. QML-IDS Results: Attack Detection

Table III provides a detailed comparison of Quantum Ma-
chine Learning models against traditional Machine Learning,
in the context of binary classification for attack detection. The
comparison spans three distinct datasets: UNSW-NB15, CIC-
IDS-17, and CICIoT2023, showcasing the F1 score as a metric
to evaluate the performance of each method. Notably, QML
models, including Variational Quantum Classifier, Quantum
Support Vector Machine, and Quantum Convolutional Neural
Network, demonstrate competitive or superior performance
compared to their ML counterparts across all datasets.

The performance of VQC is particularly impressive, mark-
ing the highest F1 scores among QML models across the
datasets, which underscores its effectiveness in detecting at-
tacks. This is evident in the comparison where VQC achieves
an F1 score of 88.10% on the UNSW-NB15 dataset, surpassing
the best performing traditional ML method, SVM, which
scores 82.34%. Similar trends are observed in the CIC-IDS-17
and CICIoT2023 datasets, where QML models generally out-
perform traditional ML methods, albeit with varying margins.
QSVM and QCNN also show strong performance, with QCNN
achieving the highest F1 score of 95.60% on the CIC-IDS-17
dataset, indicating the potential of QML models in enhancing
cybersecurity measures.

C. qIDS Results: Identification of Attacks

The multiclass classification results for attack identifica-
tion across the UNSW-NB15, CIC-IDS-17, and CICIoT2023
datasets, as shown in Tables IV, V, and VI, reveal insightful
trends about the capabilities of Quantum Machine Learn-
ing (QML) models versus traditional Machine Learning (ML)

TABLE IV: Multiclass F1 score Results: UNSW-NB15
dataset.

Attack VQC QSVM QCNN RF SVM CNN

Analysis 95.55 87.85 98.88 90.23 96.45 95.15
Backdoor 84.16 82.08 91.05 92.11 90.78 90.13
DoS 89.29 88.68 93.23 82.56 92.45 80.26
Exploits 95.23 93.78 94.44 85.89 79.01 78.16
Fuzzers 76.12 96.55 93.14 79.78 77.56 76.89
Generic 97.01 94.45 95.00 99.01 99.34 94.83
Recon 98.88 99.72 97.48 82.89 86.12 90.46
Shellcode 68.23 76.67 79.94 80.12 76.23 72.00
Worms 22.86 55.89 65.11 35.78 20.56 48.15

TABLE V: Multiclass F1 score Results: CIC-IDS-17 dataset.

Attack VQC QSVM QCNN RF SVM CNN

BoT 88.23 97.11 98.45 92.12 94.67 91.45
BruteForce 95.87 99.99 99.99 96.24 93.45 94.42
DoS 90.32 90.79 92.45 98.02 99.67 96.15
DDoS 90.54 99.99 96.55 99.34 94.32 96.32
Infiltration 90.99 99.66 97.42 97.53 99.87 97.15
PortScan 95.45 96.32 97.48 97.45 97.89 96.88
WebAttack 92.78 96.67 97.83 96.89 98.21 96.55

TABLE VI: Multiclass F1 score Results: CICIoT2023 dataset.

Attack VQC QSVM QCCN RF SVM CNN

BruteForce 64.19 70.25 74.76 62.55 60.41 66.31
DoS 92.03 95.59 96.43 95.13 92.86 94.41
DDoS 92.81 95.48 96.37 95.78 92.52 95.27
Mirai 90.32 96.92 97.48 96.44 93.00 97.92
Recon 83.40 80.60 92.53 85.88 81.95 88.44
Spoofing 74.95 70.20 76.08 65.73 60.69 68.27
Web 60.00 72.85 74.56 60.48 58.10 68.63

methods. In the UNSW-NB15 dataset, QML models such as
VQC, QSVM, and QCNN display varied performance across
different attack types. They show exceptional proficiency in
identifying attacks like Analysis and Reconnaissance, where
QCNN notably excels with scores reaching up to 98.88%
for Analysis attacks. However, for categories like Worms
and Shellcode, these quantum models lag behind, suggesting
that while QMLs are promising for certain attack vectors,



traditional ML methods like SVM and RF still hold the upper
hand in others.

Moving to the CIC-IDS-17 dataset, the pattern of QML
models, particularly QSVM and QCNN, achieving high F1
Scores in detecting specific types of attacks such as Brute-
Force and DDoS is evident. This indicates their potential in
accurately identifying these attacks, with QSVM and QCNN
reaching near-perfect scores in BruteForce detection. Yet, in
scenarios involving DoS and WebAttack, traditional methods
like SVM and RF present competitive or superior performance,
highlighting the nuanced effectiveness of QML models de-
pending on the nature of the attack.

The analysis of the CICIoT2023 dataset further underscores
the strengths and limitations of QML in the realm of cyber-
security. Here, QML models demonstrate robust performance
in identifying DoS attacks, with QCNN showing a remarkable
F1 Score of 96.43%. However, for other attack types such as
Spoofing and Web attacks, the performance of QML models
is less dominant, with traditional ML methods occasionally
outperforming or matching the quantum approaches. This
comparative analysis across three datasets illustrates the evolv-
ing landscape of intrusion detection, where QML models
offer significant advantages for certain attack types but still
require advancements to consistently outperform traditional
ML methods across the board.

Therefore, despite the promising results, the performance
gap between QML and traditional ML methods is not over-
whelmingly large, suggesting that while QML offers potential
advantages in certain scenarios, it does not yet decisively out-
perform traditional approaches in all aspects. This highlights
the importance of further research and development in QML to
fully exploit its capabilities and potentially achieve substantial
improvements over traditional ML methods in the field of
cybersecurity.

VII. CONCLUSION AND FUTURE WORK

This work introduced QML-IDS, a Hybrid Quantum
Machine Learning-based attack detection system, designed
to tackle emerging challenges in cybersecurity scenarios.
Through experimental evaluations conducted on different pub-
lic datasets, QML-IDS proved to be effective in detecting
attacks, both in binary and multiclass classifications, showing
competitive results compared to traditional Machine Learning
methods.

In the current NISQ and quantum utility scenarios, the
application of qIDS already demonstrates competitive results
compared to other ML techniques in the detection and iden-
tification of attacks. However, there are still challenges and
limitations to be overcome for the practical implementation of
the proposal in real network environments, which continues
to be an active area of research and opens up space for future
works. Among the points to be explored are integration with
existing classical IDS frameworks and with traditional ML-
based IDS systems to create a more robust defense mechanism.
Moreover, addressing the constraints of quantum hardware
availability and navigating the privacy concerns associated

with processing data on platforms like IBM’s will be crucial
in pushing the boundaries of quantum-enhanced cybersecurity
solutions.
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