
PIPO-TG: Parameterizable High-Performance
Traffic Generation

Filipo G. Costa+, Francisco G. Vogt∗, Fabricio Rodrı́guez Cesen∗, Ariel Góes de Castro∗

Marcelo Caggiani Luizelli+, Christian Esteve Rothenberg∗
+Federal University of Pampa (UNIPAMPA), Brazil

∗University of Campinas (UNICAMP), Brazil

Abstract—In recent years, the increasing demand for network
resources due to real-time applications and data-intensive activ-
ities has posed challenges in managing and optimizing network
performance. To assess network performance, security, and
efficiency, traffic generation plays a crucial role. We introduce
PIPO-TG, a Tofino-based traffic generation for high-performance
experiments. The primary objective of PIPO-TG is to generate
realistic and diverse traffic patterns, enabling researchers to
evaluate network performance under varying conditions pro-
viding customizable packet forwarding with P4 programmable
data planes. Our main contributions include user-defined packet
header customization and open-source code for reproducibility.
These efforts foster collaboration within the research community
to advance traffic generation techniques. We show that PIPO-
TG only requires a few lines of code to simulate heterogeneous
network scenarios (e.g., traffic bursts and DDoS attacks) while
maintaining hardware performance and flexibility.

I. INTRODUCTION

Traffic generation tools have been widely used to assess
network performance, efficiency, and security in research and
practical applications. The capability to generate controlled
and realistic network traffic has become paramount for recent
advances in programmable networks [1]. By enabling the
controlled generation of realistic network traffic and emu-
lating real-world scenarios, these tools empower researchers
and practitioners with valuable insights into network system
behavior. These insights, derived from the experiments using
traffic generation tools, contribute to enhancing network tech-
nologies, making them an essential asset for those seeking to
navigate the complexities of current networks.

Despite consistent efforts made by the research community,
existing traffic generation solutions still pose some limitations.
Software-based traffic generation solutions [2]–[4] offer a cost-
effective and versatile means of simulating network traffic.
These solutions can be executed on top of commodity servers
and provide high flexibility for traffic generation, user-friendly
interfaces, and intuitive controls, simplifying the process of
generating traffic. However, these generators have performance
limitations and struggle to reach line-rate values or gener-
ate a few hundred Gbps. Hardware-based traffic generation

This work was supported by the Innovation Center, Ericsson S.A. and
by the Sao Paulo Research Foundation (FAPESP), grant 2021/00199-8, CPE
SMARTNESS. This study was partially funded by CAPES, Brazil - Finance
Code 001. This work was partially funded by National Council for Scien-
tific and Technological Development (CNPq 404027/2021-0), Foundation for
Research of the State of Sao Paulo (FAPESP 2020/05115-4, 2021/06981-0,
2021/00199-8, 2020/05183-0).

solutions [5], [6] are built on top of specialized hardware
components and are a common choice for high-performance
experiments. Although they can reach line rate performance
metrics, they are usually challenging to use, inflexible to
changes (e.g., creation of new protocols), and costly.

More recently, some research efforts [7], [8] have emerged
to design easy-to-use solutions to generate network traffic
with high performance and without dedicated hardware. These
solutions are based on generating traffic with Tofino hardware,
a P4-based switch capable of processing hundreds of Gbps
per port, and also perform internal traffic generation. However,
these strategies still have limitations in their traffic generation.
While HyperTester [7] needs an auxiliary CPU to create its
packets and is not completely open-source, P4TG [8] does not
support the definition of customizable protocols and is limited
to only a few different network flows. Additionally, both
solutions do not support throughput variations (e.g., bursts and
varying workloads) and do not support running a user-defined
P4 code side-by-side with Tofino traffic generation.

Addressing these limitations while maintaining the benefits
offered by these solutions is not a trivial task. Working with
Tofino and the P4 language to maintain high performance and
traffic generation accuracy includes many challenges. Tofino’s
native traffic generation unit does not support resolving these
limitations; thus, we must address them through the P4 code.
However, P4 has its restrictions, such as instruction limits,
and does not support complex comparisons, floating-point
operations, and loops.

In this work, we present PIPO-TG, a parameterizable and
high-performance traffic generation solution. PIPO-TG is built
on top of the Tofino Native Architecture (TNA) [9] and relies
on P4 language to describe and customize packet generations
on the TNA architecture. PIPO-TG can generate network
traffic up to 1 Tbps line rate, ensuring accurate performance
evaluations without introducing bottlenecks or distortions.
PIPO-TG introduces support for arbitrary traffic patterns using
a high-level software-based programming interface that makes
the design and operation of a hardware-based traffic generator.
For example, by using the PIPO-TG programming interface,
we can easily define a variety of network workloads and
forward them to a user P4 code running on the same switch.

PIPO-TG extends Tofino traffic generation capabilities and
provides features never seen in other Tofino-based traffic
generators. In Figure 1, we illustrate the entire traffic genera-

In
g
re
s
s

Ingress

pipeline

E
g
re
s
s

Egress

pipeline

In
g
re
s
s

Ingress

pipeline

E
g
re
s
s

Egress

pipeline

Tra c

Manager

PIPO

Packet Generator

Fig. 1: Overview of PIPO-TG traffic generation in TNA.

tion process: 1 users set the traffic parameters, 2 PIPO-TG
generates traffic utilizing the Tofino traffic generation unit, 3
tailors it using the PIPO-TG P4 code, and 4 subsequently
routes it to the user’s P4 code or defined port.

Our main contributions are summarized as follows:
• A hardware-based traffic generator for line-rate traffic;
• A high-level interface for easy traffic generation
• A parameterizable traffic generator that extends Tofino

capabilities, allowing users to generate customizable traf-
fic with different packet distributions and rates.

• Open source artifacts for the sake of reproducibility.1

The remainder of this paper is organized as follows. Sec-
tion II discusses our background topics while Section III
presents the related works. In Section IV, we introduce the
PIPO-TG architecture, features, and implementation. Sec-
tion V presents and discusses an evaluation of the proposed
approach in three use cases. Last, in Section VI, we conclude
the paper with final remarks and perspectives for future work.

II. BACKGROUND

In this section, we provide a comprehensive background
overview covering network traffic generation and the Tofino
Native Architecture. It starts by delving into the fundamen-
tals associated with conventional traffic generation and then
progresses to explore concepts such as the P4/TNA architec-
ture and Tofino traffic generation. Finally, we highlight the
technologies underpinning our traffic generator.

A. Traffic generation

In the realm of computer networking, traffic generation
refers to the creation of artificial traffic that mimics the
behavior of real-world network traffic for testing and eval-
uating network devices, protocols, and applications. Traffic
generation is crucial in developing, testing, and validating
modern network applications, especially in data centers, cloud
computing, and software-defined networking contexts.

In this context, traffic generators are designed for injecting
controlled packets into the network, providing high flexibility.
This flexibility allows network engineers to replicate traffic
behavior and simulate specific events and desired traffic pat-
terns. Whether mimicking the heavy data transfers of a file
transfer protocol, the intermittent bursts of a VoIP call, or the
continuous flow of web traffic, these traffic generators offer

1https://github.com/FilipoGC/PIPO-TG/

the versatility to recreate a wide array of network scenarios.
This capability empowers engineers to thoroughly test and
optimize network configurations, ensuring that networks can
adapt and perform optimally under various conditions and
meet the demands of real-world usage.

Traffic generators can be categorized into two distinct
groups: software-based and hardware-based traffic generators.
This classification is determined by the methods employed for
traffic generation. Software-based generators primarily rely on
software applications to simulate and generate network traffic,
whereas hardware-based generators use specialized hardware
components to accomplish this task. Several critical factors
come into play when deciding whether to opt for a hardware-
based or software-based traffic generator. Table I presents the
benefits of choosing traditional software or hardware traffic
generation techniques and compares them with the help of
PIPO-TG. Below, we discuss each of these benefits.
Usability. The usability determines the ease of use for a
traffic generator. Hardware-based solutions are usually not
user-friendly since users must configure low-level features to
obtain the desired behavior. On the other hand, software-based
solutions provide a transparent platform to the user, where
he only cares about declaring the desired behavior. PIPO-
TG balances both approaches with the simplicity of stating
approaches in software and hardware performance.
Accuracy. Accuracy in traffic generation refers to how closely
the generated traffic patterns match real-world network behav-
ior. Software-based generators may be limited in replicating
complex or nuanced traffic patterns. In contrast, hardware-
based generators often offer higher accuracy by using special-
ized hardware components to emulate real traffic precisely.
Flexibility. Flexibility assesses how easily a traffic generator
can be configured and adapted to different network environ-
ments and testing scenarios. Software-based traffic generators
are more flexible, allowing for versatile configuration and
adaptability to various network setups. Hardware-based solu-
tions may have limitations in flexibility because they are built
around specific hardware components.
Performance. Performance refers to the ability of a traffic
generator to handle and generate network traffic effectively
and efficiently, principally in terms of traffic volume. In
general, Hardware-based traffic generators can deliver superior
performance, especially when dealing with high traffic loads
(e.g., hundreds of Gbps) or complex scenarios, thanks to their
dedicated hardware. Software-based generators might perform
less for demanding network testing tasks due to their reliance
on general-purpose computing resources.
Features. Features encompass the capabilities and functional-
ities offered by a traffic generator. Due to their dedicated hard-
ware components, hardware-based generators often provide
advanced features and capabilities. Software-based generators
can vary widely regarding available features, depending on the
specific software used and its capabilities.

In this context, PIPO-TG tries to take advantage of the best
of both worlds, using Tofino switch’s hardware traffic genera-
tion capabilities combined with Python and P4 applications. It

https://github.com/FilipoGC/PIPO-TG/

Pipe 1

In
p
u
t

p
o
rt

s

Ingress
Parser

Ingress
Control Ingress

Deparser
Egress
Parser

Egress
Control Egress

Deparser

Traffic
Manager

Pipe 0

In
p
u
t

p
o
rt

s

O
u
tp

u
t

p
o
rt

s
O

u
tp

u
t

p
o
rt

s

Ingress
Parser

Ingress
Control Ingress

Deparser
Egress
Parser

Egress
Control Egress

Deparser

Pkt gen

Pkt gen

Meters

Registers

Queueing

Multicast

Recirculation

Meters

Registers

Tables Tables

Tables Tables

Meters

Registers

Meters

Registers

Fig. 2: TNA architecture.

extends the Tofino traffic generation possibilities, providing a
user-friendly and flexible interface while maintaining accuracy
and performance.

B. P4 and Tofino Native Architecture

P4 is a network programming language that specifies packet
processing behaviors and network forwarding in a protocol-
agnostic manner at a high level of abstraction. P4-enabled
devices, called targets, can be reprogrammed on the fly to
adapt to evolving network requirements without expensive
hardware upgrades or vendor-specific software. However, each
P4 target follows a specific architecture containing its compo-
nents, units, externs, and limitations. The Intel Tofino switch
is an example of a P4 target following the TNA architecture.

The TNA offers network operators a suite of programming
tools and abstractions for fine-tuning the behavior of Tofino
ASICs. It empowers the creation of efficient, adaptable data
plane pipelines tailored to precise network needs. TNA in-
tegrates a compiler and run-time system, converting P4 pro-
grams into optimized low-level instructions for Tofino ASIC
execution, leveraging the hardware’s capabilities to enhance
performance and efficiency.

Additionally, TNA adopts an extensively parallel and pro-
grammable pipeline architecture, facilitating the concurrent ex-
ecution of even four P4 codes across parallel pipelines. These
pipelines are optimized for efficient packet processing tasks
and are structured with ingress and egress units, encompassing
a parser, a deparser, and dedicated processing stages. Figure 2
presents a two-pipeline TNA architecture where we can see the
ingress and egress units commented and the traffic manager
responsible for tasks such as traffic scheduling, buffering, and
management.

C. Tofino traffic generation

In addition, the Tofino switch can generate packets inter-
nally. As discussed previously, Tofino can contain 2 or 4
pipelines, each with its internal traffic generation unit (see Fig-
ure 2). Each of these units can be configured individually and

TABLE I: Comparison of SW/HW traffic generation.

Characteristic Software-based Hardware-based PIPO-TG

Usability ! ✗ !

Accuracy ✗ ! !

Performance ✗ ! !

Resources ✗ ! !

Flexibility ! ✗ !

support the definition of eight different packet streams. These
streams have a set of parameters (e.g., headers, pkt size, inter-
packet gap). They can be activated by four different triggers:
port down, packet recirculation, one-time, and periodic. With
its triggers and streams, each pipeline can generate up to 100
Gbps of traffic and forward it to a desired output port.

Despite providing a powerful traffic generation unit,
Tofino’s native traffic generator has limitations. These limita-
tions include the maximum number of flows that can be gener-
ated (only 8 per pipeline), lack of support for custom headers,
and, principally, the configuration complexity, requiring the
configuration of dozens of parameters to generate a simple
IP packet. In this context, PIPO-TG seeks to extend Tofino’s
traffic generation capabilities and simplify its configuration.

III. RELATED WORK

Traffic generators serve as tools for designing and man-
aging networks. They introduce controlled packets into net-
works to replicate traffic patterns. However, establishing eval-
uation methods and metrics to ensure accuracy remains a
challenge [12], which calls for research. When comparing
hardware-based generators with software-based ones, it is
important to consider cost implications. Software-based so-
lutions are more cost-effective, while hardware-based options
offer design and precision (see Table I). This analysis assists
professionals in selecting the traffic generator that suits their
requirements. Recently, both software- and hardware-based
approaches have been developed in the context of traffic
generation, mainly used for academic evaluation. Next, we
describe the main software and hardware solutions for traffic
generation, emphasizing how PIPO-TG differs from them.

A. Software-based traffic generation

Traditional software approaches [13]–[16] are widely used
for bandwidth measurement. Iperf3 [13] is the de-facto open-
source tool that supports various protocols and provides client
and server modes for generating and measuring traffic. Simi-
larly, Netperf [14] leverages the Berkeley Sockets interface and
supports Data Link Provider Interface (DLPI), Unix Domain
Sockets, and IPv6 measurements. Netcat [15] is also a data
transfer over TCP/UDP tool for Unix systems. It is a reliable
tool that can be directly or seamlessly integrated into other
programs and scripts. Httperf [16] allows the operator to
generate and sustain server overload. It supports the HTTP/1.1
protocol and its extensibility for incorporating new workload
generators and performance measurements.

In contrast, some approaches [2]–[4] rely on DPDK [17]
to generate network traffic. Pktgen [2] reaches up to 10 Gbps
for 64-byte frames, acting as both a transmitter and receiver
at line rate. Similarly, MoonGen [3] reaches up to 10 Gbps
for minimal-sized frames within a single core. For multiple
cores, it can generate up to 120 Gbps. Furthermore, it provides
unparalleled flexibility by enabling users to customize the
packet generation logic through user-controlled Lua scripts.
Adding to its capabilities, MoonGen harnesses the untapped
potential of commodity NICs by utilizing hardware features.

TABLE II: Comparative review of related work on traffic generators (TG).

Software-based TG Hardware-based TG
Feature Pktgen [2] MoonGen [3] TRex [4] Yuan [10] HyperTester [7] P4STA [11] Plakalovic [6] P4TG [8] PIPO-TG
100 Gbps on multiple ports ✗ ✗ ✗ ✗ ! ! ✗ ! !

Workload assay ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ !

Custom traffic ! ! ! ! ! ✗ ! ✗ !

Internal generation. ! ! ! ! ✗ ✗ ! ! !

TRex [4] is an open-source traffic generator that operates in
stateless and stateful modes, generating traffic on layers L3 to
L7. It reaches up to 200 Gbps within a single server, making it
suitable for high-performance testing scenarios. Scapy [18] is
a robust Python library that allows users to create, decode,
send, and capture user-defined packets. Additionally, it is
cross-platform, offering native support for Linux, macOS,
most Unix-based systems, and Windows with Npcap, while
LuaJIT [19] and MoonGen [3] are built on Lua language.

B. Hardware-based traffic generation

More recently, hardware-based solutions [6]–[8], [10], [11]
have been developed due to their ability to generate traffic
at higher rates. Yuan et al. [10] introduces a fast flow-
based Ethernet Traffic Generator on FPGA as a cost-effective
solution for network evaluation. The system offers a user-
friendly interface for control and generates up to 10 Gbps.
HyperTester [7] and P4STA [11] are hybrid software- and
hardware-based traffic replicators. The first runs on a single
Tofino switch. It involves using the Network Testing API
(NTAPI) to define triggers for packet manipulation and statistic
collection. By utilizing these expressions, template packets
are created along with a corresponding P4 program that
enables the desired functionality. Evaluations on the hardware
testbed demonstrate that HyperTester achieves line-rate packet
generation, reaching speeds of 400 Gbps while maintaining
highly accurate rate control. Similarly, P4STA [11] leverages
the accuracy of hardware packet timestamping. It runs on
an off-the-shelf P4-programmable switch and reaches 100
Gbps per port, keeping a 1-nanosecond hardware timestamp
resolution. Once the device under test responds by sending
back the packets, they are appended with a second timestamp
and duplicated to an external host. The hardware timestamps
are extracted at the external host and can be utilized to
calculate Round-trip times (RTTs) and other relevant metrics.
Plakalovic et al. [6] is implemented on VHDL and fully
utilizes a 40 Gbps link while offering high flexibility to
manipulate traffic characteristics at the packet level in FPGA
boards. The hardware design of the packet generator. P4TG [8]
is another Tofino-based work. It can generate up to 1 Tbps of
Ethernet traffic distributed across ten ports at 100 Gbps each.
Also, it supports packet customization and provides measure-
ments of L1 and L2 transmission and receive rate, packet loss,
out-of-order packets, round trip time, and inter-arrival times
(IATs). Notably, P4TG demonstrates stable IATs for 64-byte
frames in constant bit-rate traffic at 100 Gbps, surpassing the
performance of other traffic generators. Additionally, P4TG is
capable of generating random traffic, enhancing its versatility.

C. Comparison

Table II compares the most relevant related work and PIPO-
TG considering the following key criteria:

• 100 Gbps on multiple ports: The capability to generate
100 Gbps or more in multiple ports and at the same time.

• Workload assay: The possibility to generate workloads
for more realistic experiments. Instead of generating traf-
fic based on a fixed throughput, workload patterns can be
based on a pre-defined model (e.g., and Flashcrowd [20]).

• Custom traffic: The capability to generate traffic with
customizable parameters. It allows researchers to define
specific traffic patterns, such as traffic volume, packet
size, distribution, or specific protocols.

• Internal generation: The ability to generate traffic with-
out the need for extra resources or servers.

As we can observe, similarly to P4TG [8], HyperTester [7]
and P4STA [11], PIPO-TG can generate 100 Gbps on multiple
ports. However, PIPO-TG is the only one that combines this
performance with a high-level interface and allows customiz-
able traffic generation and following workload assay models.
As a disadvantage, PIPO-TG does not have a monitoring
system integrated into the generator.

IV. PIPOTG

PIPO-TG is a traffic generator that uses Tofino’s traffic
generation capabilities combined with Python and P4 process-
ing to generate up to 100 Gbps per port of parametrizable
traffic. PIPO-TG allows users to define the traffic patterns
using a user-friendly script similar to Scapy to define the traffic
protocols, packet size distribution, throughput, and others.

Furthermore, while generating traffic, users can simultane-
ously execute another P4 code that receives this traffic and
can carry out its operation normally. It allows testing a P4
code on a single P4 switch without needing an external server
for traffic generation. In the following sections, we discuss
the traffic generation process using PIPO-TG, its architecture,
main features, implementation, and current limitations.

A. Architecture

The PIPO-TG architecture presented in Figure 3 illustrates
the high-level components and their interconnections. These
components are described below:

1) Input: As input, PIPO-TG receives the traffic patterns
definition and, optionally, a user-provided P4 code. To define
the generated traffic, the user needs to write a simple Python
script describing the traffic patterns along with configuration
parameters. Algorithm 1 presents an example of PIPO-TG
input code to generate IP packets at 100 Mbps with destination

PIPO-TG
traffic

definition

Generate
port config

Processing
module

Execution
module

Generated
files

Tofino Switch

PIPO-TG

 User P4
code

(optional)

Preprocessing
module

Input

User
PIPO-TG RunningOutput

Generate
table

entries

Generate
runtime file

Generate
PIPO-TG
P4 code

PIPO-TG
P4 code

Runtime
file

Port Config Table
entries

Compile
P4 codes

Run Switch
2 Pipelines

Configure
Tables

Configure
Ports

Parser
user traffic
definition

Fig. 3: PIPO-TG architecture

Algorithm 1 Example of PIPO-TG traffic generation input

import PipoTG
i n s t a n t i a t e t h e t r a f f i c g e n e r a t o r
myTG = P i p o G e n e r a t o r ()
d e f i n e t h e g e n e r a t i o n p o r t
myTG . a d d G e n e r a t i o n P o r t (6 8)
Phys por t , Por t ID (D P) , Por t BW
myTG . a d d O u t p u t P o r t (5 , 160 , ” 100G”)
s e t IP header w i t h d s t addr
myGenera tor . addIP (d s t = ” 1 0 . 0 . 0 . 2 ”)
c r e a t e a 8 b i t s cus tom header
cus tomHeader = Header (name=” myHeader ” , s i z e =8)
cus tomHeader . a d d F i e l d (F i e l d (” m e t a d a t a ” , 8))
myTG . addHeader (cus tomHeader)
d e f i n e Throughput and t y p e (p o r t s h a p i n g / me ter)
myTG . addThroughpu t (1 0 0 , ” me te r ”)
s t a r t t r a f f i c g e n e r a t o r
myTG . g e n e r a t e ()

IP 10.0.0.2 and a custom header to be sent via physical port 5
(configured to receive up to 100 Gbps). Additionally, the user
defines configuration details such as the pipeline generation
port, port bandwidth, and the type of traffic limitation desired
(more information in Section IV-C). As mentioned, the user
can also define a P4 code to run simultaneously along with
PIPO-TG. The P4 code is optional because the user can
directly send the generated traffic to an external server without
the need to go through a new P4 code.

2) Preprocessing module: The preprocessing module
parses, analyzes, and prepares the input data for the processing
module. In this step, PIPO-TG analyzes whether user-defined
traffic is consistent with Tofino restrictions (e.g., checking
whether custom headers are byte-aligned) and whether all
configuration parameters have been declared with valid values.
In case of any problem, the unit returns a message to the
user with what needs to be corrected. Otherwise, the unit only
configures the data structures used by the processing module.

3) Processing module: The processing module uses the
data structures configured by the preprocessing module to pro-
cess the input data and generate all the necessary configuration
files. In this process, we use the user-defined traffic patterns to
generate the PIPO-TG P4 code, the table entries script, the port
configurations, and the script for execution and interaction.
Note that this processing generates unique configuration files
that match the defined traffic patterns, and any changes require
the generation of new files.

4) Generated files: The generated files are the configura-
tion files necessary to run the traffic generator. They include
the PIPO-TG P4 code, which receives the packets generated by

the Tofino TG unit and performs additional processing on the
packets according to the specified traffic patterns. They also
have a Python script that adds all the table entries necessary
to activate the traffic generator, in addition to configuring the
meters and defining the required packet streams. Finally, they
have the execution script (shell script) and the file configuring
the ports after Tofino is started.

5) Execution module: This step coordinates the execution
of PIPO-TG. It includes compiling the P4 codes, initializing
the switch, configuring the ports, adding the table entries, and
then initiating traffic generation. The output of this module is
the traffic being generated and forwarded to the user’s P4 code
or the defined physical port.

B. Main features

PIPO-TG offers several features and characteristics for traf-
fic generation. These features allow users to generate different
types of traffic, being able to simulate unlimited network
scenarios. Note that the features that will be presented are
not the literal commands present in the PIPO-TG script. To
see the available commands and how to use them, access our
repository [21]. Next, we present the main features available:
Packet crafting. The most basic function of PIPO-TG is the
ability to generate basic Ethernet packets for a defined output
port. By default, PIPO-TG will generate 64B Ethernet packets
at 100 Gbps and forward them to the configured port.
Throughput definition. Users can specify their desired traffic
transfer rate in Mbps, with the ability to set rates of up to 100
Gbps for a particular port. Furthermore, users can assign up
to 10 ports (due to multicast limit) to receive identical traffic,
resulting in a maximum achievable throughput of 1 Tbps.
Common protocols. Users can create packets with protocols
like Ethernet, IP, TCP, and UDP. Furthermore, the user can
define the specific value for the fields (e.g., a fixed IP source
and destination) or a random number of values to alternate
(e.g., 100 random IPs). Alternatively, the user can specify a
limited distribution (e.g., 10% of packets with IP X, etc).
Custom protocols. In addition to conventional protocols,
PIPO-TG allows the definition of any customized protocol
or header for the generated packets. Unlike other strategies
that only support traditional protocols such as Ethernet and IP,
with PIPO-TG, the user is free to create any custom protocol,
defining its fields and distributions.
Packet size definition and distribution. The users define the
packet size for the generated packets using a fixed definition
(i.e., 64B, 128B, 256B, 512B, 1024B, 1280B, and 1518B) or

following a desired distribution (e.g., 20% 64B, 20% 128B,
40% 512B, 20% 1024B).
Workload assay. Instead of the user defining a fixed transfer
rate for the traffic, the idea is to enable users to define
parameters such as minimum and maximum points in addition
to the time distribution in those points. It allows users to repro-
duce different traffic distributions, such as those presented in
[20] for workload assay generation. Currently, PIPO-TG only
supports a limited number of throughput points and enables
the creation of a simplified version of the Flashcrowd model.
User P4 code support. Users can benefit from the multiple
pipeline support to execute a user-defined P4 code that receives
the traffic generated by PIPO-TG pipeline.

C. Implementation

Next, we will discuss the PIPO-TG implementation, pre-
senting the strategies for implementing the available features.
Table III summarizes the strategies used to implement each
feature. Additionally, we discuss each of them in more detail:

1) Traffic crafting: To create the packets, we use the packet
definition available in Tofino packet generation. The most
basic packet that can be defined is an Ethernet packet with
a size of 64B. Furthermore, the user can generate traffic on
multiple ports (e.g., to generate up to 1 Tbps) with the traffic
manager multicast function to replicate the generated packets.

2) Throughput: To ensure the throughput defined by the
user, we use two methods: port shaping, limiting the output
port, or the meter configuration. In the high-level script, the
user can choose between both options. To generate more than
100 Gbps, we use the Tofino multicast function to replicate
the traffic generated. However, multicast is limited to 10 ports,
therefore we can reach up to 1 Tbps.

3) Common protocols: We leverage the packet definition
available in the Tofino traffic generation for standard proto-
cols. Since Tofino already generates packets with the desired
protocols, we only change the P4 code when the user defines
more complex configurations (e.g., Random IPs, which have
their distribution controlled using the random extern [9]).

4) Custom protocols: To generate flows with customizable
protocols, we generate the packets with the standard Ethernet
headers and use the P4 code to define and add the user-defined
headers. In the P4 code, in addition to including customizable
headers, we use tables and table entries to configure the fields.

5) Packet size: To define the packet size and switch be-
tween different packet sizes, we use the eight packet streams
available in Tofino traffic generation. With this, we can gen-
erate up to 8 different package sizes, and we control their
distribution through the P4 code and the random extern [9].

6) Workload assay: For workload generation and complex
traffic patterns, we use the definition of multiple meters
combined with hardware timestamp monitoring. Therefore, we
define multiple throughput limits using the meters and switch
between them according to the time.

7) User P4 code support: PIPO-TG takes advantage of
Tofino’s multiple pipeline support for executing different P4

TABLE III: PIPO-TG implementation overview.

Feature Implementation approach

Traffic crafting Tofino internal traffic generation unit to create, and
P4 code to parse, edit, and forward

Throughput [Mbps] Port shaping in the output port, or
Meter algorithm to drop packets

Common headers Tofino packet generation unit to define, and
P4 code to edit using tables and the random extern

Custom headers P4 code to include custom headers,
Tables and table entries to modify fields

Packet size Tofino TG unit to create different streams, and
P4 code with random extern to coordinate

Workload assay P4 code and hardware timestamp to measure time,
Different meters to control throughput

User P4 code support Tofino multi pipeline support
Traffic manager + bypass egress to change pipeline

codes in different pipelines. Our scripts configure the PIPO-
TG P4 code to run in one pipeline and the user code to run
in another. The generated traffic is received by the PIPO-
TG P4 code, and after processing, changes for the user P4
code pipeline using the traffic manager (See Figure 1). To
do this, we forward the packet to the recirculation port of
the user pipeline and set the egress bypass flag. Thus, the
packet switches to the user’s pipeline without executing egress
processing but is recirculated to be executed by the ingress
processing of the user’s pipeline.

D. Limitations

While PIPO-TG enhances the traffic generation capabilities
of Tofino and offers a user-friendly interface and high flexibil-
ity, it is essential to acknowledge that it also has some existing
limitations. Firstly, as we use a P4 code to generate PIPO-TG
traffic when testing a user P4 code, there will be one less
pipeline to receive and send traffic, that is, 16 fewer physical
ports available. Furthermore, packets sent to from PIPO-TG to
the user’s P4 code must recirculate to the user pipe meaning
that the user code can receive a maximum of 100 Gbps.

Although PIPO-TG has several features, we have some
restrictions when using multiple elements together. For ex-
ample, it is impossible to combine the generation of random
packet sizes with the generation of random IPs with the
variation of customizable header parameters (see our GitHub
documentation for more details). Additionally, PIPO-TG does
not support stateful connections (such as TCP) and only sends
packets without saving the state or waiting for a response.
Finally, unlike P4TG, T-REX, and other traffic generators,
PIPO-TG does not have an integrated interface for monitoring
the generated traffic.

V. EVALUATION

In this section, we delve into the comprehensive evaluation
of PIPO-TG. First, we present a brief comparison between
PIPO-TG and other traffic generators. Next, we present three
use cases for PIPO-TG: workload alternation, burst simulation,
and Distributed Denial of Service (DDoS) simulation. We do
not evaluate PIPO-TG resource utilization, because as Tofino
pipelines have isolated resources, the PIPO-TG resources do
not impact the user’s pipeline.

Setup. The experiments were conducted in a Tofino switch
(Edge-Core Wedge100BF-32X) directly connected to a local
server using a high-speed 100 Gbps cable.

A. PIPO-TG vs. State-of-the-Art
We compare PIPO-TG against P4TG [8] and Hyper-

Tester [7] towards different facets. Given that PIPO-TG and
P4TG utilize the same hardware unit for traffic generation
and HyperTester uses Tofino for traffic replication, the results
would be similar in performance and accuracy. Then, in
Table IV, we compare PIPO-TG, P4TG, and HyperTester
qualitatively regarding their characteristics.
Custom Protocols. Refers to working with customizable
headers, including new user-defined protocols. HyperTester
and PIPO-TG support custom protocols, while P4TG is limited
to generating Ethernet/IP packets.
Number of flows. We assess the limitation of traffic generators
in creating many distinct flows. P4TG is restricted to 7
different flows due to Tofino traffic generation limitations. In
contrast, PIPO-TG, which extends Tofino’s traffic generation
with P4 modifications, and HyperTester CPU-based packet
generation do not face this limitation.
Tofino internal traffic generation. We evaluate whether the
traffic is generated using the Tofino internal generation unit,
that is, without the need for a CPU or any other server. In this
case, P4TG and PIPO-TG generate traffic using the Tofino
unit, while HyperTester relies on the CPU to generate packets
and only amplifies its traffic with Tofino.
Workload generation. We assess the capacity of traffic
generators to produce diverse traffic behaviors rather than
adhering to a static throughput. It allows users to create various
workload models, including random bursts and throughput
fluctuations. Among the generators, only PIPO-TG provides
support for this feature, while the others are restrained to
generating traffic at a fixed rate.
User-defined P4 code. This feature evaluates the traffic gen-
erator’s native support for a user’s P4 code. It means that in
addition to generating traffic with Tofino, users can direct this
traffic to a P4 code running on the same device. Only PIPO-
TG supports user-defined P4 since the other two generators
use Tofino to generate traffic.
Stateful connections. We assess whether the traffic generator
is capable of establishing stateful connections (e.g., TCP and
Quick UDP Internet Connection (QUIC)) and sending traffic
according to the messages it receives (e.g., sending a Syn-
Ack after a Syn or responding to messages with Acks). In
this feature, despite having limitations, only HyperTester is
capable of establishing connections.
Open-source artifacts. We assess whether the traffic generator
has artifacts available to the community. In this sense, despite
having a public repository on Github, HyperTester does not
make its TNA P4 codes available, while P4TG and PIPO-TG
have their solutions completely open for community use.

B. Use case I: Workload alternation
The first use case is the ability of PIPO-TG to generate

workload alternation patterns. This behavior may be helpful

TABLE IV: Qualitative validation

Characteristic HyperTester P4TG PIPO-TG
Custom protocols Yes No Yes
Number of flows Yes No Yes
Tofino internal traffic generation No Yes Yes
Workload generation No No Yes
Support for user P4 code No No Yes
Open-source artefacts No Yes Yes
Stateful connections Yes No No

Algorithm 2 PIPO-TG traffic alternation code snippet.

co ur ve (a) − 4 s e c o n d s
myTG . addThroughpu t (max=500 , min =100 , i n t e r v a l =4)
co ur ve (b) − 8 s e c o n d s
myTG . addThroughpu t (max=500 , min =100 , i n t e r v a l =8)
myTG . addIP (s r c =” 1 9 2 . 1 6 8 . 1 . 1 0 ” , d s t = ” 1 9 2 . 1 6 8 . 2 . 2 0 ”)

in different scenarios. For instance, we can monitor conges-
tion control [22], such as data centers, by alternating traffic
workload to assess how well the network manages congestion
and prioritizes traffic. Similarly, it may be interesting to stress-
test [23] in network devices to understand how it performs
under different loads. In this case, a traffic alternation pattern
can be valuable. Figure 4 presents two distinct square curve
patterns. For both scenarios, we send alternating traffic where
the user defines a lower- (100 Mbps) and upper-bound (500
Mbps). On the left (Figure 4a), we alternate the throughput
every 4 seconds, while at the right (Figure 4b), we perform
this modification at half the frequency – i.e., every 8 seconds.
The Algorithm 2 presents the necessary code in PIPO-TG
to generate both curves. We only need seven lines of code
to generate the two curves using PIPO-TG (The 3 shown in
the algorithm, after the 4 lines to initialize the generator and
configure the port, as shown in Algorithm 1). It means there
is 98.58% (or 70X) less code compared to the generated files.

C. Use case II: Burst simulation

Our second use case is a burst simulation. In real network
scenarios, traffic bursts may occur for several reasons – e.g.,
Flash crowds [24], TCP Incast scenarios [25], TCP segment
offloading or application-level batch processing [26]. These
bursts can cause problems like congestion, packet losses,
increased latency, and others. Therefore, developing and ef-
ficiently evaluating solutions for this type of event is essential
in current networks.

We demonstrate how to use PIPO-TG to simulate traffic
bursts in the network. PIPO-TG allows users to define traffic
bursts at specific intervals. Algorithm 3 presents the additional
code necessary to generate burst traffic using PIPO-TG. In
this example, we define that the bursts will be standard IP
packets sent to port 5. Instead of limiting a throughput, we
use the command addV ariance() to define that we will have
a throughput of 10 Gbps for 8s, followed by 90 Gbps for 2s. It
means that we will have regular traffic of 10 Gbps, and every
8s, we will have a burst of 90 Gbps lasting 2s.

In just six lines of code, we define an experiment simulating
bursts, whereas the generated PIPO-TG codes (P4 and table

Algorithm 3 PIPO-TG burst traffic code snippet.

([Throughpu t s] , [I n t e r v a l s])
myTG . a d d V a r i a n c e ([1 0 0 0 0 , 90000] ,

[8 , 2])

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Time (seconds)

(a) 4-second square wave shape.

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Time (seconds)

(b) 8-second square wave shape.

Fig. 4: Simulated traffic alternation.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Time (seconds)

Fig. 5: Generation of network bursts every 8 seconds.

entries) for the same burst scenario consist of around 500
lines. It means that PIPO-TG reduces code effort by 98.8%
(or 83.3X) for this scenario. Figure 5 shows the result of
the generated bursts, with bursts of approximately 2 seconds
arriving every 8 seconds on the server.

D. Use case III: DDoS simulation

The third use case involves simulating a DDoS attack sce-
nario [27]. Strategies for modeling DDoS attacks [27], [28] can
take various factors into account, such as attack distribution,
including protocols, payload, and load. For instance, users can
specify a pool of IP attackers targeting a single destination.
In this setup, a monitoring application considers the load
distribution per flow and can identify the source of attackers
based on source IPs.

Algorithm 4 PIPO-TG DDoS simulation code snippet.

myTG . addThroughpu t (10000 , ” me te r ”)
myTG . addIP (s r c =” 1 9 2 . 1 6 8 . 1 . 0 ” , srcRandom = True ,

srcMask = 24 , d s t = ” 1 9 2 . 1 6 8 . 2 . 2 ”)

 30

 35

 40

 45

 50

 0 50 100 150 200 250

#
 P

ac
k

et
s

(A
v

g
)

IP Addresses

Fig. 6: Average of packets per IP address.

Algorithm 4 outlines the DDoS attack scenario. The user
specifies a desired throughput, in this case, 10 Gbps, and
provides a pool of IP addresses for the attackers, each with an
IP base and a mask. Attackers can use a portion of the available
link bandwidth to send traffic randomly. The destination IP,
representing the target address for the attackers, is defined.
Traffic generation starts subsequently.

While the PIPO-TG script consists of only six lines, the gen-
erated files contain around 480. This results in a remarkable
code reduction of 98.5% (or 80X) using PIPO-TG. Finally,
Figure 6 displays the source IP distribution in the traffic.
We captured the first 10K packets in each run (30 runs) and
counted the number of packets per source IP. Ideally, all IPs
would have around 39 packets. The observed distribution is
relatively uniform, ranging from 35.27 to 42.37 packets per IP,
demonstrating PIPO-TG’s efficiency in this network scenario.

VI. FINAL REMARKS

In this work, we presented PIPO-TG, a Tofino-based traffic
generator, to perform parametrizable experiments with high
performance and flexibility. PIPO-TG can generate traffic
with custom protocols and different throughput distributions,
reaching up to 1 Tbps. In our evaluation, we explored the
PIPO-TG capabilities through three key use cases: traffic al-
ternation, burst simulation, and DDoS attack modeling. PIPO-
TG demonstrated its ability to efficiently generate diverse
network traffic patterns with a straightforward syntax, reducing
code complexity significantly. We conducted experiments in
a demanding network environment using a Tofino switch,
emphasizing the distinguishing capabilities of PIPO-TG and
showcasing its potential in congestion control, stress testing,
and security scenarios. In future work, we have plans to extend
the functionalities supported by PIPO-TG, adding support
for stateful connections (e.g., TCP, QUIC), and developing
a platform for monitoring the generated traffic.

REFERENCES

[1] W.-x. Liu, C. Liang, Y. Cui, J. Cai, and J.-m. Luo, “Programmable
data plane intelligence: advances, opportunities, and challenges,” IEEE
Network, 2022.

[2] K. Wiles, “Pktgen-dpdk documentation, release 22.07.2,” 2023. [Acces:
May 19, 2023].

[3] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“Moongen: A scriptable high-speed packet generator,” in Proceedings
of the 2015 Internet Measurement Conference, pp. 275–287, 2015.

[4] T. TRex, “Trex realistic traffic generator,” 2023. [Acces: May 20, 2023].
[5] “Ixia traffic generator.” Available on: ”http://www.ixiacom.com”.
[6] M. Plakalovic, E. Kaljic, and M. Mehic, “High-speed fpga-based

ethernet traffic generator,” in 2022 XXVIII International Conference
on Information, Communication and Automation Technologies (ICAT),
pp. 1–6, IEEE, 2022.

[7] Y. Zhou, Z. Xi, D. Zhang, Y. Wang, J. Wang, M. Xu, and J. Wu, “Hy-
pertester: high-performance network testing driven by programmable
switches,” in Proceedings of the 15th International Conference on
Emerging Networking Experiments And Technologies, pp. 30–43, 2019.

[8] S. Lindner, M. Häberle, and M. Menth, “P4tg: 1 tb/s traffic generation
for ethernet/ip networks,” IEEE Access, vol. 11, pp. 17525–17535, 2023.

[9] Intel, “P416 intel tofino native architecture—public version..” https://
github.com/barefootnetworks/Open-Tofino”, 2021.

[10] D. Yuan, W. Yi, H. Hu, and X. Shi, “A fast, affordable and extensible
fpga-based synthetic ethernet traffic generator for network evaluation,”
in 2017 3rd IEEE International Conference on Computer and Commu-
nications (ICCC), pp. 1036–1040, IEEE, 2017.

[11] R. Kundel, F. Siegmund, J. Blendin, A. Rizk, and B. Koldehofe,
“P4sta: High performance packet timestamping with programmable
packet processors,” in NOMS 2020-2020 IEEE/IFIP Network Operations
and Management Symposium, pp. 1–9, IEEE, 2020.

[12] S. Molnár, P. Megyesi, and G. Szabó, “How to validate traffic gen-
erators?,” in 2013 IEEE International Conference on Communications
Workshops (ICC), pp. 1340–1344, IEEE, 2013.

[13] M. Mortimer, “iperf3 documentation,” 2018.
[14] R. Jones, “Netperf. hewlett-packard.,” 1996. [Acces: June 26, 2023].
[15] *Hobbit*, “Netcat,” 1995. [Acces: June 26, 2023].
[16] D. Mosberger and T. Jin, “Httperf—a tool for measuring web server

performance,” SIGMETRICS Perform. Eval. Rev., vol. 26, p. 31–37, dec
1998.

[17] L. Projects, “Data plane development kit,” 2023. [Acces: May 19, 2023].
[18] P. Biondi, “Scapy,” 2011. [Acces: June 26, 2023].
[19] M. Pall, “Luajit,” 2023. [Acces: June 20, 2023].
[20] L. C. de Almeida, J. L. da Silva, R. P. Lins, P. D. Maciel Jr,

R. Pasquini, and F. L. Verdi, “Wave-um gerador de cargas múltiplas para
experimentação em redes de computadores,” in Anais Estendidos do XLI
Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuı́dos,
pp. 9–16, SBC, 2023.

[21] F. Costa, F. Vogt, A. Castro, F. Rodriguez, M. Luizelli, and C. Rothen-
berg, “Pipo-tg: Parametrizable high performance traffic generatior.”
https://github.com/FilipoGC/PIPO-TG, 2023.

[22] A. Balador, E. Cinque, M. Pratesi, F. Valentini, C. Bai, A. A. Gómez,
and M. Mohammadi, “Survey on decentralized congestion control meth-
ods for vehicular communication,” Vehicular Communications, vol. 33,
p. 100394, 2022.

[23] G. Soós, F. N. Janky, and P. Varga, “Distinguishing 5g iot use-cases
through analyzing signaling traffic characteristics,” in 2019 42nd In-
ternational Conference on Telecommunications and Signal Processing
(TSP), pp. 562–565, IEEE, 2019.

[24] I. Ari, B. Hong, E. L. Miller, S. A. Brandt, and D. D. Long, “Managing
flash crowds on the internet,” in 11th IEEE/ACM International Sympo-
sium on Modeling, Analysis and Simulation of Computer Telecommuni-
cations Systems, 2003. MASCOTS 2003., pp. 246–249, IEEE, 2003.

[25] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in
Proceedings of the ACM SIGCOMM 2010 Conference, pp. 63–74, 2010.

[26] R. Kapoor, A. C. Snoeren, G. M. Voelker, and G. Porter, “Bullet trains:
A study of nic burst behavior at microsecond timescales,” in Proceedings
of the ninth ACM conference on Emerging networking experiments and
technologies, pp. 133–138, 2013.

[27] K. Vanitha, S. V. UMA, and S. Mahidhar, “Distributed denial of service:
Attack techniques and mitigation,” in 2017 International Conference on

Circuits, Controls, and Communications (CCUBE), pp. 226–231, Dec
2017.

[28] A. Cetinkaya, H. Ishii, and T. Hayakawa, “An overview on denial-of-
service attacks in control systems: Attack models and security analyses,”
Entropy, vol. 21, no. 2, p. 210, 2019.

"http://www.ixiacom.com"
https://github.com/ barefootnetworks/Open-Tofino"
https://github.com/ barefootnetworks/Open-Tofino"
https://github.com/FilipoGC/PIPO-TG

	Introduction
	Background
	Traffic generation
	P4 and Tofino Native Architecture
	Tofino traffic generation

	Related work
	Software-based traffic generation
	Hardware-based traffic generation
	Comparison

	PipoTG
	Architecture
	Input
	Preprocessing module
	Processing module
	Generated files
	Execution module

	Main features
	Implementation
	Traffic crafting
	Throughput
	Common protocols
	Custom protocols
	Packet size
	Workload assay
	User P4 code support

	Limitations

	Evaluation
	PIPO-TG vs. State-of-the-Art
	Use case I: Workload alternation
	Use case II: Burst simulation
	Use case III: DDoS simulation

	Final Remarks
	References

