
Towards Time-Sensitive Networking Traffic Generation with
PIPO-TG

Filipo Gabert Costa1, Francisco Germano Vogt1, Fabricio Rodriguez1,
Marcelo Luizelli2, Christian Esteve Rothenberg1

1 University of Campinas (UNICAMP)
2Federal University of Pampa (Unipampa)

f289951@g.unicamp.br, f234632@dac.unicamp.br, frodri@dca.fee.unicamp.br,

marceloluizelli@unipampa.edu.br ,chesteve@unicamp.br

Abstract. Realistic traffic simulation is essential for evaluating network perfor-
mance, security, and efficiency. However, modern network environments de-
mand testers with high performance, scalability, precision, flexibility, and cost-
effectiveness, which current solutions struggle to achieve simultaneously. PIPO-
TG has been proposed to overcome these constraints as a Tofino-based traffic
generator tailored for high-performance parametrizable traffic experiments. In
this work, we extend PIPO-TG capabilities to support an even more challen-
ging scenario, a delay distribution on a nanosecond scale. We reproduce time-
sensitive networking (TSN) delay traces measured in a commercial TSN bridge.
We demonstrate the flexibility, accuracy, and performance of PIPO-TG, making
it an ideal tool for network testing in network research and experimentation.

1. Introduction

Proper traffic generation is key to evaluating network performance, efficiency, and secu-
rity in both research and technical applications. The ability to generate controlled and
realistic network traffic has become crucial, particularly with recent advancements in pro-
grammable networks [Liu et al. 2022]. These tools enable the controlled generation of
realistic traffic and the emulation of real-world scenarios, providing valuable insights into
network system behavior. Moreover, traffic generation plays a pivotal role in capacity
planning, enabling the prediction and scaling of network capacity to meet current and fu-
ture traffic demands, thereby ensuring consistent network performance. Lastly, the ability
to generate controlled and realistic traffic supports scenario-based simulations, facilitating
decision-making and network architecture planning across a range of environments.

Software-based traffic generators [Emmerich et al. 2015, TRex 2023] offer valu-
able network evaluation and testing alternatives. These platforms, often developed using
frameworks like Data Plane Development Kit (DPDK) and netmap, are known for their
cost-effectiveness and flexibility. Moreover, software-based traffic generators are often
open-source and freely available, making them accessible to a wide range of users. Howe-
ver, these solutions have limitations, such as their accuracy, precision, and scalability,
reaching a rate of around 10 Gbps per server core, therefore having difficulties in rea-
ching a throughput in the range of Tbps like hardware-based traffic generators. On the
other hand, despite its high performance and accuracy, hardware-based traffic genera-
tors [Zhou et al. 2019, Lindner et al. 2023] still suffer from their flexibility and inability

to replicate real scenarios (e.g., stateful connections), in addition to some not being avai-
lable to the community [Zhou et al. 2019].

To address these limitations, we recently proposed PIPO-TG [Costa et al. 2024],
a Tofino-based traffic generator designed for high-performance parametrizable traffic ex-
periments. PIPO-TG is capable of generating traffic replicating various scenarios, such
as congestion, microbursts, and distributed denial-of-service (DDoS) attacks. In this de-
monstration, we present new capabilities of PIPO-TG to support even more challenging
scenarios. We extend PIPO-TG to reproduce real-world delay measurements from time-
sensitive networks (TSN). We use the real delay traces shared by the DETERMINISTIC-
6G project [DETERMINISTIC6G 2023]. The traces contain delay variations measured
in a real TSN scenario in the range of nanoseconds. Therefore, a fine granularity tool for
their reproduction and experimentation is required. Our results show that hardware-based
PIPO-TG is able to reproduce these extremely low delay proposed scenarios, reaching
delays in the range of 500ns, significantly contributing to the replication of real scenarios
through the generation of synthetic traffic. During the demonstration, participants will
be able to observe the application of PIPO-TG not only to these use cases but also to
alternative ones. Additionally, they will be able to visualize the results through our new
graphical interface, which has been developed especially for demonstration purposes.

2. Related work
This section discusses related works that focus principally on traffic generators. Existing
endeavors are implemented either software-based or hardware-based.

Traditional open-source software tools such as Iperf3 [Mortimer 2018], Net-
perf [Jones 1996], Netcat [*Hobbit* 1995], and Httperf [Mosberger and Jin 1998] are
commonly utilized for bandwidth measurement, offering support for various protocols
and modes for traffic generation and measurement. However, their accuracy is often un-
reliable, posing challenges in replicating tests across different scenarios. Despite attempts
in the literature to address and test these issues [Kundel et al. 2020], the results have fallen
short of expectations [Botta et al. 2010].

In more specific solutions like TRex [TRex 2023], an open-source traffic genera-
tor, operations encompass both stateless and stateful modes, simplifying traffic generation
across layers L3 to L7. TRex achieves remarkable speeds of up to 200 Gbps within a sin-
gle server, rendering it ideal for high-performance testing scenarios. Moreover, its fully-
featured scalable TCP/UDP integration underscores TRex’s scalability, reinforcing its sui-
tability for demanding testing environments. Similarly, MoonGen [Emmerich et al. 2015]
achieves speeds of up to 10 Gbps for minimal-sized frames within a single core, scaling up
to 120 Gbps for multiple cores. Moreover, it offers exceptional adaptability by allowing
users to tailor the packet generation logic using Lua scripts under their control. Additi-
onally, MoonGen leverages hardware features to unlock the possibilities of commodity
NICs, further enhancing its capabilities.

Additionally, the Tofino Switch is employed by some traffic generators HyperTes-
ter [Zhou et al. 2019] represents a hybrid approach, combining software and hardware
for traffic replication. It operates on a single Tofino switch, utilizing the Network Testing
API (NTAPI) to define triggers for packet manipulation and statistic collection. Hyper-
Tester achieves line-rate packet generation, reaching speeds of 400 Gbps on a hardware

testbed while maintaining precise rate control. Similarly, P4TG [Lindner et al. 2023],
another Tofino-based tool, can generate up to 1 Tbps of Ethernet traffic distributed across
ten ports at 100 Gbps each. It supports packet customization and provides comprehensive
measurements, including L1 and L2 transmission and receive rates, packet loss, round trip
time, and inter-arrival times (IATs). Notably, P4TG demonstrates stable IATs for 64-byte
frames in constant bit-rate traffic at 100 Gbps, outperforming other traffic generators.

P4TG relies on the same hardware unit for traffic generation, while HyperTester
utilizes the Tofino for traffic replication, suggesting potential similarities in performance
and accuracy. Unlike P4TG, HyperTester enables user-defined protocols. Additionally,
HyperTester relies on the CPU for packet generation, whereas P4TG leverages the Tofino
internal traffic generation unit. In this work, we use PIPO-TG, a traffic generator that
utilizes the Tofino traffic generation unit without external hardware. Enables users to em-
ploy custom protocols without packet restrictions. Furthermore, PIPO-TG offers versati-
lity in traffic generation by allowing users to create various workload models, including
random bursts and throughput fluctuations. Additionally, PIPO-TG supports user-defined
Protocol-independent Packet Processors (P4) code, enhancing its flexibility and usability.

3. PIPO-TG: Parameterizable High-Performance Traffic Generation
PIPO-TG presents a robust traffic generation solution, leveraging Tofino’s traffic gene-
ration capabilities in conjunction with Python and P4 processing to achieve speeds of
up to 100 Gbps per port, all customizable to user preferences. This tool offers a user-
friendly scripting interface akin to Scapy [Biondi 2011], allowing users to define intricate
traffic patterns, including protocols, packet size distributions, and throughput parameters.
Moreover, PIPO-TG supports concurrent execution of additional P4 code, enabling com-
prehensive testing scenarios on a single P4 switch without requiring external servers for
traffic generation.

3.1. Architecture
The architecture of PIPO-TG, present in Figure 1, provides an overview of the modules,
components, and their connections.

PIPO-TG Running on
Tofino Switch

Output

PIPO-TG
traffic

definition

Generate
port config

Processing
module

Execution
module

Generated
files

PIPO-TG

 User P4
code

(optional)

Preprocessing
module

Input

User Generate
table

entries

Generate
runtime file

Generate
PIPO-TG
P4 code

PIPO-TG
P4 code

Runtime
file

Port Config

Compile
P4 codes

Run Switch
2 Pipelines

Configure
Tables

Configure
Ports

Parser
user traffic
definition

Table
entries

Figura 1. PIPO-TG architecture

Input: PIPO-TG receives traffic pattern definitions and, optionally, user-provided P4
code. To define the generated traffic, users write a straightforward Python script outli-
ning traffic patterns and configuration parameters. The script includes specifications like
output port, throughput, common or custom protocols, and additional configuration de-
tails like pipeline generation port, port bandwidth, and desired traffic limitations.

PIPO-TG: The fundamental part of our tool is where data processing occurs, and the
corresponding files are generated and executed.

Preprocessing Module: The preprocessing module is responsible for parsing, analyzing,
and preparing input data for further processing. Within this phase, PIPO-TG ensures that
user-defined traffic adheres to Tofino restrictions.

Processing Module: Utilizing the data structures configured, the processing module exe-
cutes the necessary actions to process input data and generate essential configuration files.
This includes utilizing user-defined traffic patterns to generate PIPO-TG P4 code, table
entry scripts, port configurations, and execution and interaction scripts.

Generated Files: The generated files encompass the essential configuration files required
for running the traffic generator. These files consist of the PIPO-TG P4 code, which is
responsible for processing packets generated by the Tofino TG unit based on specified
traffic patterns. Additionally, they include a Python script that adds necessary table entries
to activate the traffic generator, configure meters and define required packet streams.

Execution Module: The execution module orchestrates the execution of PIPO-TG, en-
compassing tasks such as P4 code compilation, switch initialization, port configuration,
addition of table entries, and initiation of traffic generation. Its output includes the gene-
rated traffic forwarded either to the user’s P4 code or the defined physical port.

The traffic generation process initiates with users configuring traffic parameters.
Subsequently, PIPO-TG generates traffic utilizing the Tofino traffic generation unit, cus-
tomizes it with the PIPO-TG P4 code, and ultimately directs it to the user’s P4 code or
designated port. This tool facilitates arbitrary traffic pattern support through an intuitive,
high-level software-based programming interface, streamlining the design and operation
of hardware-based traffic generators.

3.2. Main Features

PIPO-TG offers some characteristics and features for traffic generation. These features
allow users to generate different types of traffic and simulate realistic network scenarios.

Packet Scheme: At its core, PIPO-TG excels in generating basic Ethernet packets desti-
ned for specified output ports. By default, it produces 64B Ethernet packets at 100 Gbps,
seamlessly forwarding them to the configured port.

Throughput Definition: Users wield the power to designate their desired traffic transfer
rate in Mbps, with the flexibility to set rates up to 100 Gbps per port. Moreover, users can
allocate up to 10 ports to receive identical traffic, achieving a throughput of up to 1 Tbps.

Common Protocols: PIPO-TG empowers users to craft packets with common protocols
like Ethernet, IP, TCP, and UDP. Users can define specific field values (e.g., fixed IP
source and destination) or incorporate random value variations (e.g., 100 random IPs).
Additionally, users can specify distributions, such as allocating 10.

Custom Protocols: In a departure from conventional approaches limited to traditional
protocols, PIPO-TG enables the definition of custom protocols or headers for generated
packets. Users enjoy the freedom to create any custom protocol, complete with field
definitions and distributions.

Packet Distribution and Definition: Users have granular control over packet size, spe-
cifying fixed sizes (e.g., 64B, 128B) or desired distributions (e.g., 20% 64B, 20% 128B).

Workload Analysis: Instead of fixed transfer rates, PIPO-TG facilitates the definition of
parameters like minimum and maximum points alongside time distributions. This feature
enables users to replicate various real traffic examples, such as traffic based on a sinusoid
wave and a mathematical model of the sine function [de Almeida et al. 2023], resulting
in a periodic load behavior.

User P4 Code: Leveraging multiple pipeline support, users can execute custom P4 code
within PIPO-TG, enabling seamless reception of generated traffic.

4. 6G/TSN Use Case

Due to the number of features provided and the flexibility in varying parameters, PIPO-
TG is capable of reproducing a large set of traffic scenarios. Even so, in this work, we
further extend the traffic generation capabilities of PIPO-TG to support a new use case:
delay distribution in 6G/TSN networks.

This is highly challenging because while the time-varying features present in the
original PIPO-TG implementation work on the scale of seconds, 5G/TSN networks have
requirements in the nanosecond scale. Therefore, we had to adapt our way of generating
traffic and our mechanism for controlling packets sent to a lower granularity and thus get
closer to the required times. Next, we discuss the scenario considered and the data used,
and we provide some results from our experiments.

4.1. Scenario: Reproducing Time-sensitive networking delays

TSN is a set of standards designed for deterministic communication over Ethernet
networks. It ensures precise timing and low-latency communication, vital for time-critical
applications like industrial automation and automotive systems, by synchronizing devices
and guaranteeing reliable data delivery. Ensuring deterministic communication with ex-
tremely low delay in the nanosecond range poses significant challenges, and replicating
these conditions with high fidelity using real hardware is equally daunting.

In our scenario, we seek to reproduce real TSN communications data, measured
and made available by the DETERMINISTIC6G project [DETERMINISTIC6G 2023].
The DETERMINISTIC6G project is an initiative aimed at addressing the emerging chal-
lenges of end-to-end deterministic communication enabled by 6G. The project aims to
develop a new architecture for 6G systems that provides predictable performance and
integrates it end-to-end with TSN and DetNet, thus bridging the gap between wired de-
terministic communication standards and the current wireless network infrastructure.

We hope that by developing a tool capable of reproducing this traffic pattern in
commercial programmable switches, such as Tofino, we can encourage even more re-
search in the area. So, we updated PIPO-TG so that it can understand the histograms

generated by DETERMINISTIC6G measurements. An example of these histograms can
be seen below:

<histogram>
<bin low="1500ns">3</bin>
<bin low="2000ns">13</bin>
<bin low="2500ns">20</bin>
<bin low="1000ns">0</bin>

</histogram>

Each histogram consists of “bin” elements representing time intervals. Each bin
specifies its lower bound and contains a count representing the number of packets falling
within that interval. The last bin is used to define the upper bound of the previous bin
and always has a count of zero. So, after reading the histograms, we configure PIPO-TG
appropriately and reproduce the traffic following the pattern defined by the histogram.
Next, we present some results obtained.

4.2. Experiments

Setup. We evaluate the performance of PIPO-TG using a Tofino Switch (Edgecore Wedge
100BF-32X) and one server (Intel Xeon E5-2620v2, dual-port 10G Intel X540-AT2 NIC,
and 64GB of memory running Ubuntu 20.04) connected via 10G SFP+ interface. We also
defined minimum-sized (64B) packets, as described in the measurements.

Methodology. Given the variety of experimental configurations in the published measu-
rements, delays can range from a few hundred nanoseconds to several hundred thousand
nanoseconds. Initially, we assess the accuracy of desired and generated delays, ranging
from 100ns to 1 million nanoseconds. To achieve this, we transmit 300 packets. The first
100 packets increment the desired delay by 100ns, the next 100 increase it by 1000ns,
and the last 100 increase it by 10, 000ns.

Delay Generation. Figure 2 presents the results. We can see that smaller values and
increments exhibit a greater disparity between the desired and generated delays (e.g., the
lowest delay value that can be generated is 595ns), whereas larger values demonstrate
closer results. This occurs because Tofino needs a few hundred nanoseconds to process
a packet, and recirculations hold the packet until the desired delay. If the packet is close
to the desired delay but still has to recirculate once more, the packet is sent with an extra
delay in relation to the desired delay due to packet recirculation and reprocessing (usually
between 300 and 400ns). This means that gradual delay increments are only supported
in this range, explaining the “staircase” behavior in the generated delays. However, as we
can see, for larger values, this time becomes negligible.

Traces Reproduction. Figure 3 presents the results for two different real DETERMI-
NISTIC6G measurements: 3(a) a measurement with nanoseconds in the region of 4k,
and 3(b) with delays of up to 17k. As demonstrated previously, PIPO-TG has difficulties
with small delay variations (e.g., from 12 to 12 in 3(a)), but with slightly higher values, it
generates values very close to ideal.

5. Documentation, Code, and Demonstration
PIPO-TG is an open-source project available at https://github.com/FilipoGC/
PIPO-TG. The project is ongoing, with frequent feature updates and possible bug fi-

 100

 1000

 10000

 100000

 1x106

 1x107

 100 200 300

D
e
la

y
 (

n
s)

Packet number

Generated delay
Desired delay

Figura 2. Generating delays from 100 nanoseconds to 1M nanoseconds

 4000

 4200

 4400

 4600

 4800

 5000

 100 200 300 400 500 600 700 800 900 1000

D
e
la

y
 (

n
s)

Packet number

Generated delay
Desired delay

(a) Reproduction of trace ”nocross vlan −
10pkt per sec”

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 100 200 300 400 500 600 700 800 900 1000

D
e
la

y
 (

n
s)

Packet number

Generated delay
Desired delay

(b) Reproduction of trace ”cross900mbps −
10pkt per sec”

Figura 3. Reproduction of different DETERMINISTIC6G traces

xes. The project is also open to contributors who can contribute with ideas, bug re-
ports, and even new features. The documentation is also available on our github project
and provides a complete usage description of all traffic generation features (i.e., packet
characteristics, delay distribution). Additionally, we provide a video tutorial showing
the configuration and execution of the traffic generator applied for different traffic pat-
terns. The video is available at https://drive.google.com/drive/folders/
1ruF0YIjaaO7xpsjz44nbTOjTAjd7KRmw?usp=sharing.

The demonstration will focus on reproducing the use case described in Sec. 4,
showcasing the potential of PIPO-TG in reproducing TSN scenarios with high fidelity.
Furthermore, attendees will be able to visualize how PIPO-TG works in other scenarios,
propose different traffic patterns, and exploit the flexibility offered by PIPO-TG.

6. Final Remarks
This work presents advanced features of the PIPO-TG open-source Tofino-based traffic
generator. We showcase the improved PIPO-TG’s capabilities and demonstrate its effici-
ency through a new use case: reproducing different TSN delay distributions and creating
packets with delays on a nanosecond scale. Future plans for PIPO-TG include supporting
stateful connections (e.g., TCP, QUIC) and developing monitoring instrumentation.

Acknowledgments
This work was partially supported by the Innovation Center, Ericsson S.A., and by the Sao
Paulo Research Foundation (FAPESP), grant 2021/00199-8, CPE SMARTNESS. Also,
this work was partially supported by FAPESP grants 2023/00794-9 and 2021/06981-0.
Finally, this study was partially funded by CAPES, Brazil - Finance Code 001.

Referências
Biondi, P. (2011). Scapy. Available: https://scapy.net/ [Acces: April 05, 2024].

Botta, A., Dainotti, A., and Pescapé, A. (2010). Do you trust your software-based traffic generator?
IEEE Communications Magazine, 48(9):158–165.

Costa, F. G., Vogt, F., Rodriguez, F., de Castro, A. G., Luizelli, M. C., and Rothenberg, C. E.
(2024). Pipo-tg: Parameterizable high-performance traffic generation. In To appear in
IEEE/IFIP Network Operations and Management Symposium (NOMS) 2024.

de Almeida, L. C., da Silva, J. L., Lins, R. P., Maciel Jr, P. D., Pasquini, R., and Verdi, F. L. (2023).
Wave-um gerador de cargas múltiplas para experimentação em redes de computadores. In Anais
Estendidos do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuı́dos,
pages 9–16. SBC.

DETERMINISTIC6G (2023). Deterministic6g deliverable 4.1, “deterministic6g detcom simulator
framework release 1”. Online. Available: https://deterministic6g.eu/index.
php/library-m/deliverables [Acces: April 05, 2024].

Emmerich, P., Gallenmüller, S., Raumer, D., Wohlfart, F., and Carle, G. (2015). Moongen: A
scriptable high-speed packet generator. In Proceedings of the 2015 Internet Measurement Con-
ference, pages 275–287.

Hobbit (1995). Netcat. Available: https://nc110.sourceforge.io/ [Acces: March
20, 2024].

Jones, R. (1996). Netperf. hewlett-packard. Available: https://github.com/
HewlettPackard/netperf [Acces: June 26, 2023].

Kundel, R., Rizk, A., and Koldehofe, B. (2020). Microbursts in software and hardware-based
traffic load generation. In NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management
Symposium, pages 1–2.

Lindner, S., Häberle, M., and Menth, M. (2023). P4tg: 1 tb/s traffic generation for ethernet/ip
networks. IEEE Access, 11:17525–17535.

Liu, W.-x., Liang, C., Cui, Y., Cai, J., and Luo, J.-m. (2022). Programmable data plane intelli-
gence: advances, opportunities, and challenges. IEEE Network.

Mortimer, M. (2018). iperf3 documentation.

Mosberger, D. and Jin, T. (1998). Httperf—a tool for measuring web server performance. SIG-
METRICS Perform. Eval. Rev., 26(3):31–37.

TRex, T. (2023). Trex realistic traffic generator. Available: https://trex-tgn.cisco.
com/ [Acces: March 20, 2024].

Zhou, Y., Xi, Z., Zhang, D., Wang, Y., Wang, J., Xu, M., and Wu, J. (2019). Hypertester: high-
performance network testing driven by programmable switches. In Proceedings of the 15th
International Conference on Emerging Networking Experiments And Technologies, pages 30–
43.

