
DEMO: P4 Replay (P4R): Reproducing Packet Traces and Stateful
Connections at Line-Rate on Your P4-capable Hardware

Francisco Germano Vogt
Universidade Estadual de Campinas (Unicamp)

Fabricio Rodriguez
Universidade Estadual de Campinas (Unicamp)

Filipo Gabert Costa
Universidade Estadual de Campinas (Unicamp)

Christian Esteve Rothenberg
Universidade Estadual de Campinas (Unicamp)

Marcelo Caggiani Luizelli
Federal University of Pampa (Unipampa)

Gyanesh Patra
Gergely Pongrácz

Ericsson Research

Abstract
Network testers are essential for assessing network performance.
They are used to generate and capture test packets to evaluate the
network’s correctness and efficiency. However, evolving demands,
such as generating realistic, high-performance workloads, pose
challenges for existing solutions. In this demonstration, we present
P4 replay (P4R), a network tester based on a programmable switch
ASIC capable of reproducing real packet traces and establishing
high-performance stateful TCP connections. P4R can test external
clients and servers with high throughput and accuracy as well as
self-testing P4 applications running in parallel on the same device.

CCS Concepts
• Networks → Network experimentation; Network perfor-
mance analysis; Programmable networks.

Keywords
P4, SDN, Network Testing, Traffic Generation
ACM Reference Format:
Francisco Germano Vogt, Fabricio Rodriguez, Filipo Gabert Costa, Christian
Esteve Rothenberg, Marcelo Caggiani Luizelli, Gyanesh Patra, and Gergely
Pongrácz. 2024. DEMO: P4 Replay (P4R): Reproducing Packet Traces and
Stateful Connections at Line-Rate on Your P4-capable Hardware . In ACM
SIGCOMM 2024 Conference (ACM SIGCOMM Posters and Demos ’24), August
4–8, 2024, Sydney, NSW, Australia. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3672202.3673743

1 Introduction
The complexity of modern networks requires controlled traffic gen-
eration to accurately evaluate the efficiency and scalability [3, 13].
With the emergence of programmable networks, there is a growing
need for realistic traffic generation to simulate real-world scenar-
ios [6] accurately. The traffic generation tools should deliver ever-
increasing throughput performance, flexible and accurate control,
and precise time-stamping to time verification (i.e., latency, jitter).
Lately, switch-based approaches [2, 5, 14] have emerged to provide

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM SIGCOMM Posters and Demos ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0717-9/24/08
https://doi.org/10.1145/3672202.3673743

Server/Client Server Client

P0 P1

P4R

Tra c

Custom

P4

1 2

3

Figure 1: P4R configuration modes.
network testing at Tbps with precise control and time-stamping.
However, current solutions still have several limitations, particu-
larly in replicating real-world traffic patterns. While P4TG [5] and
PIPO-TG [2] support scripted traffic patterns, they do not support re-
producing real traffic captures and establishing stateful connections.
HyperTester [14] only supports it in a limited way (e.g., without
handshaking and flow control, just waiting for ACKs to send traffic),
in addition to requiring auxiliary CPU support to generate traffic
and not being open-source.

In this demo, we present P4 Replay (P4R) [12] as a high-end traffic
generation tool that overcomes limitations from state-of-the-art
Tofino-based traffic generators. P4R benefits from the Tofino traffic
generation capabilities to replicate real-world traffic patterns while
maintaining high performance and accuracy. The user/network
tester can use P4R to reproduce pre-captured traces (i.e., PCAPs)
and create stateful TCP connections at the Tofino line rate. P4R can
be used in three configuration modes (see Fig. 1): client, server, or
internal. In client mode 1 , P4R can reproduce PCAPs or establish
TCP connections with a connected server; in server mode 2 , P4R
responds to TCP connections from connected clients; and in internal
mode 3 , P4R can send packet traces or TCP connections to test
custom P4 code running in parallel, in another pipeline. Armed with
these features, P4R emerges as a powerful tool for realistic network
experimentation, implementing the most challenging features not
present in state-of-the-art Tofino-based traffic generators [2, 5, 14].

2 Motivation & Challenges
The current generation of programmable switches and 100-to-
400Gb network interface cards (NICs) [7, 8] are constantly reshaping
the network testers’ performance requirements. Generating traffic
at hundreds of Gbps per port is supported only by specific hard-
ware, solutions based on DPDK [4] and netmap [9], or solutions
based on programmable switches. While solutions based on specific
hardware and FPGA are expensive and inflexible, solutions based
on DPDK, such as Trex [11], depend on the associated CPU and
may require many cores to achieve the desired throughput.

These limitations have attracted attention to traffic generators
based on programmable switches [1, 2, 5, 14]. While these genera-
tors can produce Tbps of traffic with high precision, they struggle

122

https://doi.org/10.1145/3672202.3673743
https://doi.org/10.1145/3672202.3673743
https://doi.org/10.1145/3672202.3673743
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3672202.3673743&domain=pdf&date_stamp=2024-08-05


ACM SIGCOMM Posters and Demos ’24, August 4–8, 2024, Sydney, NSW, Australia Vogt.et al.

TG 

Con guration

Tables 
Con guration

Ports
Con guration

User 

Input

TCP

Tra c
PCAP

Tra c

TCP

Control

Packet 

Classi cation

Checksum

Validation
Checksum
Calculation

P4R

Code

PCAP

Con guration

State

Control

To no TG

Ingress
Packet size

Correction

Packet

Emmit

Genrated Files

Figure 2: P4R Architecture.

with replicating realistic traffic patterns. P4TG and PIPO-TG [2, 5]
only support the reproduction of simple traffic patterns, unable to
reproduce packet traces and stateful connections. HyperTester [14]
supports playback PCAPs with the limitation that they contain a
single flow and the reproduction of TCP flows only in a stateless
manner. More recently, Norma [1] proposed support for stateful
connections on programmable switch ASICs; however, Norma does
not support the reproduction of PCAP packet traces, works only in
client mode, and does not support testing a P4 code internally, in
addition to not providing open-source code.

Addressing the limitations of current network testers requires
tackling several design and implementation challenges to make
these features feasible in current programmable ASICs:
Limited memory. Current programmable ASICs have limited
memory, typically only dozens of MB, to store state information. To
replay PCAPs using just the ASIC (without an auxiliary CPU like
HyperTester), we need to fit the PCAP packet information within
this restricted memory. Similarly, all connection state information
for stateful connections must be stored in the registers.
Pipeline constraints. To test a parallel P4 code with the generated
traffic, we need to use just one pipeline for traffic generation and
control. Unlike Norma, which utilizes multiple pipelines for gener-
ating and controlling network traffic, we have fewer recirculation
ports, memory, and pipeline stages to implement our solution.

3 P4R Architecture & Implementation
P4R simplifies realistic and customized high-performance network
tests by allowing users to configure the traffic generator using a
user-friendly script. The script to define P4R traffic is Python-based,
similar to Scapy and other Python-based packet manipulators. P4R
auto-generates all necessary files from the defined traffic character-
istics to configure the switch and start the traffic generation. The
user inputs include the operation mode, traffic configurations, and
the user’s P4 code in the case of internal mode. P4R has the three
different configuration modes described below:
Client mode. P4R can instantiate clients to send traffic (i.e., packet
traces) or establish stateful TCP connections with external servers.
Server mode. P4R will act as a stateful TCP server (e.g., iperf) and
establish connections with multiple clients.
Internal mode. The traffic generated by P4R is internally routed
to a user’s P4 code running in parallel in another pipeline.

These three P4R modes can be used individually to reproduce
packet traces and establish stateful connections. Figure 2 illustrates
the P4R architecture and workflow. For the PCAP reproduction, the
user can only use the client and internal mode, and in addition to the

Table 1: P4R P4/TNA implementation approaches.
Task Implementation approach

Packet Generation Tofino’s native traffic generation unit, periodic/one-shot trigger
Throughput Definition Tofino port shaping or meters (user selection)
PCAP Reproduction Registers, table entries, and random payload
TCP Stateful Connection Registers to save connection states and template packets
Support for user P4 Code Multi pipeline support and recirculations
Packet Size Correction Tofino mirror extern to truncate the packets

desired PCAP file, the user can choose two playback modes: timed
and throughput. In the timed mode, the packets will be sent in order
concerning the timestamps in the file. In throughput mode, the
packets will be sent in the PCAP order, respecting the throughput
defined in the user input file. For the TCP stateful connections,
the user can select any of the three configuration modes and even
combine internal with client or server modes.

P4R uses the input traffic patterns to generate four configura-
tion files: (i) Tofino traffic generation, (ii) P4R P4 code, (iii) Tables,
and (iv) Ports. These files are used to configure and start running
the switch and Tofino’s native traffic generator. Furthermore, we
configured all the ingress pipeline tables and registers, which are
responsible for storing and controlling the states of active connec-
tions. This design enables the swapping of pipelines through the
traffic manager, allowing the generated traffic to be forwarded to
the pipeline containing the user’s P4 code. Table 1 summarizes the
tasks and implementation approaches.
Challenges. P4R only captures the headers of packet traces, which
are restricted to a maximum of 120 bytes and may not include all
packet protocols. Additionally, we only establish stateful connec-
tions with iperf, and we do not have a comprehensive analysis of
the true scalability of the number of connections supported by P4R.

4 Conclusions and Future Work
This demo shows how P4R contributes to the ecosystem of realistic
high-performance network testing. Using a programmable switch
ASIC, P4R can reproduce advanced traffic patterns, establish high-
throughput TCP connections, and be the first strategy to reproduce
packet traces using the ASIC capabilities. As an open-source, user-
friendly traffic generator, P4R provides a valuable tool for network
testing and advanced programmable networking research, enabling
self-testing P4-based solutions with our internal mode.
Futurework. First, we plan to formalize the performance and scala-
bility limits of the traffic generated by P4R.We also want to consider
the implementation of P4R in themost recently programmable ASIC
models like Tofino 2 and evaluate how this extends P4R capabilities.
Furthermore, we plan to include other features in P4R to support
different types of stress tests, such as SYN flood and microbursts,
and even analyze the feasibility of including the QUIC protocol
for stateful connections. Finally, we consider integrating our traffic
generator with the ASIC-based P7 network emulator [10], enabling
traffic generation, emulation of network topologies, and testing P4
codes on a single switch.

5 Acknowledgments
This work was supported by Ericsson Telecomunicações Ltda., and
by the Sao Paulo Research Foundation (FAPESP), grant 2021/00199-
8 (CPE SMARTNESS), 2020/05115-4, and 2020/05183-0. This study
was also partially funded by CAPES, Brazil-Finance Code 001, and
CNPq (404027/2021-0).

123



DEMO: P4 Replay (P4R) ACM SIGCOMM Posters and Demos ’24, August 4–8, 2024, Sydney, NSW, Australia

References
[1] Yanqing Chen, Bingchuan Tian, Chen Tian, Li Dai, Yu Zhou, Mengjing Ma,

Ming Tang, Hao Zheng, Zhewen Yang, Guihai Chen, et al. 2023. Norma: Towards
Practical Network Load Testing. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23). 1733–1749.

[2] Filipo Gabert Costa, Francisco Vogt, Fabricio Rodriguez, Ariel Góes de Castro,
Marcelo Caggiani Luizelli, and Christian Esteve Rothenberg. 2024. PIPO-TG:
Parameterizable High-Performance Traffic Generation. In To appear in IEEE/IFIP
Network Operations and Management Symposium (NOMS) 2024.

[3] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and
Georg Carle. 2015. Moongen: A scriptable high-speed packet generator. In
Proceedings of the 2015 Internet Measurement Conference. 275–287.

[4] Linux Foundation. 2015. Data Plane Development Kit (DPDK). http://www.
dpdk.org

[5] Steffen Lindner, Marco Häberle, and Michael Menth. 2023. P4TG: 1 Tb/s Traffic
Generation for Ethernet/IP Networks. IEEE Access 11 (2023), 17525–17535.

[6] Wai-xi Liu, Cong Liang, Yong Cui, Jun Cai, and Jun-ming Luo. 2022. Pro-
grammable data plane intelligence: advances, opportunities, and challenges. IEEE
Network (2022).

[7] Mellanox. 2020. 200Gb/s ConnectX-6 Ethernet Single/Dual-Port Adapter IC.
Online. https://www.mellanox.com/products/ethernet-adapter-ic/connectx-6-
en-ic

[8] NVIDIA. 2021. NVIDIA BlueField-2. https://resources.nvidia.com/en-us-
accelerated-networking-resource-library/bluefield-2-dpu-datasheet [Access:
Feb 16, 2024].

[9] Luigi Rizzo. 2012. Netmap: a novel framework for fast packet I/O. In Proceedings
of the 2012 USENIX Conference on Annual Technical Conference (Boston, MA)
(USENIX ATC’12). USENIX Association, USA, 9.

[10] Fabricio Rodriguez, Francisco Germano Vogt, Ariel Góes De Castro, Marcos Felipe
Schwarz, and Christian Rothenberg. 2022. P4 programmable patch panel (p7) an
instant 100g emulated network on your tofino-based pizza box. In Proceedings of
the SIGCOMM’22 Poster and Demo Sessions. 4–6.

[11] Team TRex. 2023. TRex Realistic Traffic Generator. https://trex-tgn.cisco.com/
Available: https://trex-tgn.cisco.com/ [Acces: March 20, 2024].

[12] Francisco Germano Vogt, Fabricio Rodriguez, Filipo Gabert Costa,
Marcelo Caggiani Luizelli, Christian Esteve Rothenberg, Gyanesh Patra,
and Gergely Pongracz. 2024. P4 Replay (P4R). https://github.com/intrig-
unicamp/P4R.

[13] Yu Zhou, Jun Bi, Yunsenxiao Lin, YangyangWang, Dai Zhang, Zhaowei Xi, Jiamin
Cao, and Chen Sun. 2019. P4Tester: Efficient runtime rule fault detection for
programmable data planes. In Proceedings of the International Symposium on
Quality of Service. 1–10.

[14] Yu Zhou, Zhaowei Xi, Dai Zhang, Yangyang Wang, Jinqiu Wang, Mingwei Xu,
and Jianping Wu. 2019. Hypertester: high-performance network testing driven
by programmable switches. In Proceedings of the 15th International Conference on
Emerging Networking Experiments And Technologies. 30–43.

124

http://www.dpdk.org
http://www.dpdk.org
https://www.mellanox.com/ products/ethernet-adapter-ic/connectx-6-en-ic
https://www.mellanox.com/ products/ethernet-adapter-ic/connectx-6-en-ic
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/bluefield-2-dpu-datasheet
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/bluefield-2-dpu-datasheet
https://trex-tgn.cisco.com/
https://trex-tgn.cisco.com/
https://github.com/intrig-unicamp/P4R
https://github.com/intrig-unicamp/P4R

	Abstract
	1 Introduction
	2 Motivation & Challenges 
	3 P4R Architecture & Implementation
	4 Conclusions and Future Work
	5 Acknowledgments
	References

