
Rethinking the In-band Network Telemetry: Towards Application
and Server-Level Network Telemetry

Francisco Germano Vogt
Universidade Estadual de Campinas (Unicamp)

Campinas, Brazil

Fabricio Rodriguez
Universidade Estadual de Campinas (Unicamp)

Campinas, Brazil

Marcelo Caggiani Luizelli
Federal University of Pampa (Unipampa)

Alegrete, Brazil

Christian Esteve Rothenberg
Universidade Estadual de Campinas (Unicamp)

Campinas, Brazil

Abstract
Fine-grained network telemetry is the basis for monitoring mod-
ern data centers and supporting in-network applications (INAs).
INAs have recently adopted a new telemetry approach in which
servers report data for INAs’ use. Despite its potential, this method
remains complex and unstandardized. This work introduces SATS,
the Server and Application Telemetry System. SATS is the first
effort to standardize application and server-level telemetry, offer-
ing high abstraction and easy deployment. SATS is a lightweight
framework designed to enhance existing INAs’ performance and
encourage new ones’ development.
ACM Reference Format:
Francisco Germano Vogt, Fabricio Rodriguez, Marcelo Caggiani Luizelli,
and Christian Esteve Rothenberg. 2024. Rethinking the In-band Network
Telemetry: Towards Application and Server-Level Network Telemetry. In
Proceedings of the CoNEXT Student Workshop 2024 (CoNEXT-SW ’24), De-
cember 9–12, 2024, Los Angeles, CA, USA. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3694812.3699922

1 Introduction
In-network computing (INC) has emerged as a new paradigm in
modern networking, leveraging the programmable capabilities pro-
vided by SmartNICs and programmable switches to execute com-
putational tasks directly within the network. This paradigm shift
offers many benefits, including higher throughput, reduced latency,
and enhanced power efficiency. The INC impacts extend beyond tra-
ditional network functions such as load balancing and congestion
control, allowing the in-network implementation of application
tasks like key-value stores and machine learning aggregation.

In-network applications (INAs) are commonly based on network-
level metrics like packet counters, inter-packet gaps, and queue
lengths. These metrics are monitored and shared using frameworks
like in-band network telemetry (INT), which allows switches to
produce millions of information reports per second [1]. However,
network-level information alone is not always sufficient to operate
INAs. Recently, efforts demonstrated that combining network-level
information with the application and server-level information can

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CoNEXT-SW ’24, December 9–12, 2024, Los Angeles, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1255-5/24/12
https://doi.org/10.1145/3694812.3699922

result in more efficient INAs for use cases like load balancing [2]
and task scheduling [3]. These solutions combine network metrics
with server metrics like CPU utilization and application load and
result in better solutions when compared to the ones based solely
on network-level metrics.

Despite existing efforts towards this direction, collecting and
using server and application-level information in INAs is not trivial.
Reversing the telemetry process by collecting data from servers/apps
imposes different constraints compared to traditional INT collec-
tion, which cannot be used due to factors such as: (I) data should
be collected on servers and processed by network devices, but the INT
specification does not support this inversion; (ii) the INT architecture
needs to be restructured, as current roles are inadequate; servers and
applications must now be incorporated as key elements.

Since we cannot use well-known frameworks like INT to in-
vert the telemetry process, collecting application and server-level
information poses the following challenges:
How to collect the information? There is no framework or stan-
dardization to collect server and application-level information. This
implies that all INAs that use or plan to use this type of informa-
tion must implement their own strategy to collect and transport
information from servers to the INAs.
How to administrate information collection? Due to the lack
of standardization in data collection, there are no strategies to
administrate this collection. Questions such as which data can we
collect? How often? How to administrate the collection to avoid
repeated data? Has not yet been addressed.
What is overhead and how to deal with it? Just as collecting data
with INT includes network and processing overhead, collecting data
from servers and applications also does – and can be even higher. In
INT collection, data is collected from switches capable of process-
ing Tbps of traffic and sent to collectors specialized in processing
this information. When collecting data from servers and applica-
tions, we include an overhead precisely where the applications are
executed, which can impact their performance.

To address these challenges, we propose SATS: the Server and
Application Telemetry System. SATS is a novel telemetry frame-
work designed to collect and manage application and server-level
information efficiently. SATS provides a high-level abstraction to
gather information from servers to network devices. With SATS
fully implemented, we aim to deliver the following contributions:
SATS Standardization.We seek to provide a complete standardiza-
tion for SATS collection. This standardization will allow developers
to create new INA easily based on SATS. Standardization will also

https://doi.org/10.1145/3694812.3699922
https://doi.org/10.1145/3694812.3699922


CoNEXT-SW ’24, December 9–12, 2024, Los Angeles, CA, USA Francisco Germano Vogt, Fabricio Rodriguez, Marcelo Caggiani Luizelli, & Christian Esteve Rothenberg

SATS

INAs

Agent

Forwarding

Arithmetic

& Logic
SATS

Data

Registers

SmartNIC

Server

Info
Applications

CPU

SATS API

SATS

Agent

Normal

Forwarding

...

INA 1 INA N

Forwarding

Arithmetic

& Logic
SATS

Data

Registers

...

Programmable Switch PipelineServer

Normal

Traffic

Telemetry

Reports

Figure 1: SATS preliminary architecture
help with interoperability between new and existing INAs and will
help the integration with other monitoring systems.
Boosted INA performance.We will demonstrate how SATS can
enhance the performance of current INAs by providing access to
a new set of finely granulated information. Our target use cases
include INAs for machine learning, load balancing, task scheduling,
and traffic classification.
Novel INA use cases.We hope that with the standardization and
abstraction provided by SATS, new INAs may emerge, working
with use cases that have still been little explored in INC. Some of
the envisioned SATS-augmented use cases include in-network VNF
resource scaling and in-network end-to-end Remote direct memory
access (RDMA) routing and congestion control mechanisms.

2 SATS Architecture & Design Principles
Figure 1 presents the SATS’ preliminary architecture. For simplicity,
we consider only one switch and one server. Each switch contains
its own set of INAs (e.g., load balancing, heavy hitter detection,
congestion control), which contains their control, arithmetic, for-
warding logic, and memory. Additionally, each INA may contain
SATS data corresponding to server and/or application data collected
via SATS telemetry. The SATS’ telemetry operates through two core
components: the SATS’ Agent and the SATS’ API, described below:
SATS Agent. Operates on both switches and servers, implement-
ing all the telemetry administration logic. The agent is responsible
for requesting/receiving SATS reports and controlling factors such
as the correct slots to read and store data and the report’s fre-
quency. It can be implemented on switches using Programming
Protocol-independent Packet Processors (P4), interacting with INAs
to provide the requested data. On servers, it can be deployed on
SmartNICs, enabling RDMA while avoiding CPU overhead.
SATS API. Operates on the server’s CPU and is responsible for
interacting with applications and system information. Applications
should provide the information to the API, which will interact with
the agent to send the data.

SATS is designed to allow the switch agent to either passively
receive data or actively request it. While registers must be prede-
fined at compile time, we expect that the register-to-INA allocation
and parameters, like report frequency, can be adjusted at runtime.
SATS is also designed to provide two main benefits: (i) easy integra-
tion into servers and INAs, and (ii) minimize telemetry overhead. To
achieve these goals, SATS is built on the following design principles:
Lightweight Agent. The agent is designed to be lightweight on
both the switch and server side. This allows most of the switch’s

resources to be used to implement INAs and minimize the overhead
on the server, not compromising the application’s performance.
High Abstraction Level. SATS offers a high-level interface for
configuring data collection. On the switch side, SATS manages
all information collection and only exposes the registers with the
collected data to the INAs. On the server side, SATS provides an
API communicating with applications to receive the required infor-
mation. From the API, SATS is responsible for administrating and
delivering this information to the destination.

3 Discussion
The design of SATS presents open challenges requiring further
exploration. Below, we highlight some key issues:
Routing.Reversing telemetry involves sending data from servers/app
to switches via RDMA requests. A primary challenge lies in ef-
fectively addressing programmable switches. Potential solutions
include implementing a minimal TCP/IP stack on the switch (e.g.,
to handle ARP responses) or using spoofed IP/MAC addresses to
enable routing in IP networks.
Network Visibility. To ensure accurate delivery of telemetry re-
ports, the SATS agent on the server must be aware of the network
switches intended to receive telemetry data. Switches could request
telemetry by broadcasting messages, or alternatively, a control
plane application could inform the servers about relevant switches.
SATS Agent. The SATS’ agent must manage which telemetry data
to send to each switch in the network. Switches may request specific
telemetry features, and the agent should determine the appropriate
timing and frequency for sending this data.
Security. SATS assumes that multiple applications can operate
concurrently on the same switch, e.g., via a Tofino hypervisor.
However, this raises security concerns, as co-located applications
might gain unauthorized access to registers. A possible solution is
extending the hypervisor to enforce isolation between applications.

4 Closing Remarks
This work introduced SATS, the first telemetry system to collect
application and server-level information. We designed SATS as a
lightweight framework for easy integration with servers and INAs.
While many issues remain in SATS’s design and implementation,
we plan to address them based on community needs and feedback.

Acknowledgments
Work supported by Ericsson Telecomunicações Ltda. , and by the
Sao Paulo Research Foundation , grant 2021/00199 − 8,
CPE SMARTNESS . Also, this work was partially supported by
FAPESP grants 2023/00794-9 and 2021/06981-0, and by FAPERGS
grant 24/2551-0001394-6. Finally, this study was partially funded
by CAPES, Brazil - Finance Code 001.

References
[1] Jonatan Langlet et al. 2023. Direct Telemetry Access. In Proceedings of the ACM

SIGCOMM 2023 Conference. 832–849.
[2] Hesam Tajbakhsh et al. 2024. P4Hauler: An Accelerator-Aware In-Network Load

Balancer for Applications Performance Boosting. IEEE Transactions on Cloud
Computing (2024).

[3] Parham Yassini et al. 2024. Horus: Granular {In-Network} Task Scheduler for
Cloud Datacenters. In 21st USENIX NSDI 24. 1–22.


	Abstract
	1 Introduction
	2 SATS Architecture & Design Principles
	3 Discussion
	4 Closing Remarks
	Acknowledgments
	References

