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Abstract
This paper analyzes the performance of disaggregating monolithic
applications across heterogeneous hardware. Amonolithic program
with convolution functions was tested on AMD, Intel servers, and
a BlueField-2 DPU (ARM). After disaggregation into independent
processes, it was run on the same server and over a local network.
Results showed that disaggregationmaintained similar performance
to the monolithic version, with minimal impact despite network
latency. We also observed improved cache utilization, particularly a
reduction in L1 cache misses and L2 accesses. Disaggregation shows
promise in optimizing memory usage. Future work will focus on
refining memory analysis and using GPUs and FPGAs to improve
computational efficiency.

ACM Reference Format:
Guilherme Mendes Vieira de Matos, Fábio Luciano Verdi, Washington R. D.
Silva, and Andrew Williams. 2024. DECOMPOSER: Functional Decomposi-
tion of Monolithic Applications to Heterogeneous Resources in Disaggre-
gated Environments. In Proceedings of the CoNEXT Student Workshop 2024
(CoNEXT-SW ’24), December 9–12, 2024, Los Angeles, CA, USA. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3694812.3699930

1 Introduction
CPUs are hitting limits due to the slowdown of Dennard scaling
and Moore’s Law. To address this, accelerators like GPUs, FPGAs,
DPUs, and TPUs are now prevalent in modern datacenters.

Datacenter disaggregation is also evolving, with resources like
memory, processing, and networking working in separate pools
to boost scalability and management. In these heterogeneous envi-
ronments, we introduce Decomposer, a method to split monolithic
applications into functional blocks, optimizing resource use across
architectures.
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2 Decomposer workflow
Current solutions enable monolithic applications in disaggregated
environments [2], but do not handle heterogeneous resources. Our
approach focuses on distributing native applications across such
resources in disaggregated setups. Our method integrates dynamic
and static analysis to boost energy efficiency and performance.

The workflow (Figure 1) starts by generating intermediate rep-
resentations (IR) from an application. Dynamic and static analysis
identify hotspots, energy consumption, and execution times. Based
on this, the application is decomposed and compiled with a socket
driver for communication. We discuss the tools and techniques
used below.

2.1 Intermediate representation
Disaggregating monolithic applications requires understanding
their pipeline, including memory operations, functions, and flow.
Tools like LLVM [3] and MLIR generate IRs and Control Flow
Graphs (CFGs) to extract functions and compile them for different
targets. After generating the IR, functions are analyzed to determine
their target hardware. The extracted functions are compiled into
binaries, and a driver, based on the CFG, ensures proper execution
and communication across hardware.

2.2 Application analysis
In this multi-processor setup, identifying functional decomposition
strategies is complex. Dynamic analysis collects data like execution
time and energy consumption per processor. Hotspots are extracted
and executed on suitable hardware. An algorithm compiles binaries
for each target, which are tested on respective servers. Profiling,
via gprof [1], stores results for analysis.

2.3 Communication deployment
After function extraction, communication between functional blocks
is key. We created a program to handle memory data, execute the
extracted function, and enable socket-based communication. For
each function, the name, required memory, and target data (e.g.,
IP and port) are analyzed from the IR. This program coordinates
communication and memory exchange between blocks.
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Figure 1: Decomposer workflow.

3 Implementation
We implemented a monolithic program with three convolution
functions (conv1, conv2, conv3), performing 1, 2, and 4 hundred
thousand iterations. The monolithic programwas executed on three
servers with AMD and Intel processors, and on a BlueField-2 DPU
(ARM). Execution times were collected for performance analysis.
We then disaggregated the program into four functions, running
them as independent processes on the same servers, and collected
new execution times. Hybrid setups were also tested, running the
main function on BlueField-2 and the convolutions on AMD, and
vice-versa, to assess performance the local network environments.

4 Results
Figure 2 shows the execution times for monolithic and disaggre-
gated applications. In this simple evaluation, the disaggregated
version on the same server maintained practically the same per-
formance compared to the monolithic version. The disaggregated
version on the network also remained in the same time range, even
taking into account that the main function was being performed
on an ARM and the existence of latency (in this case, around 1ms
because it is a local network). However, Figure 3 shows better uti-
lization of the cache memory, reducing L1 cache misses and L2
cache accesses.

5 Conclusions
This study investigated the performance of disaggregating mono-
lithic applications across heterogeneous hardware. In our experi-
ments, disaggregation on the same server showed negligible per-
formance difference compared to the monolithic version, while dis-
aggregation across a local network yielded similar results, despite
higher network latency. Improved cache utilization, particularly
in reducing L1 cache misses and L2 accesses, was observed. Fu-
ture work will focus on further optimizing memory management
and exploring hybrid environments involving GPUs and FPGAs to
enhance computational performance in disaggregated setups.
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Figure 2: Execution time.
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