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Abstract
Recent advancements in 5G technology have enabled significant
breakthroughs in applications requiring high data throughput and
low latency, such as Mobile Augmented Reality (MAR). Never-
theless, mobile devices tend to be computationally and energy-
constrained, limiting their capability to provide synchronous inter-
actions between the real environment and visual augmentations.
Thus, in this work, we propose a collaborative inference method
to run compute-intensive AR tasks, such as object recognition, on
heterogeneous devices at the network edge. This approach would
benefit both end-users and service providers by reducing end-to-
end latency and operating costs, respectively.
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1 Introduction
Each generation of mobile network technology has enhanced con-
nectivity and transformed communication, enabling voice services,
multimedia streaming, and internet browsing. The 5th and Beyond
generations of mobile wireless networks (5GB) promise to be dis-
ruptive technologies, enabling applications previously hindered by
high data throughput and strict low-latency requirements, such as
Mobile Augmented Reality (MAR). [2].
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For optimal Quality of Experience (QoE), MAR applications must
provide accurate and synchronous interactions between the envi-
ronment, the user, and visual augmentations within the human
visual reaction time (20 milliseconds) [2, 4]. However, due to com-
puting and energy constraints, mobile devices may not deliver the
expected QoE. A potential solution is to distribute the computa-
tion: tasks requiring fewer resources are executed locally, while
high-demand tasks are offloaded to a remote server [2].

Hence, the Multi-access Edge Computing (MEC) network ar-
chitecture plays a significant role in delivering AR’s promises by
moving the processing of latency-critical applications closer to
end devices and minimizing communication delays compared to
Mobile Cloud Computing (MCC). However, MEC provides fewer
computing resources than the cloud, creating a tradeoff between
communication latency and computation capability [2].

In this work, we aim to address this tradeoff by investigating
how we can distribute the computation of AR tasks, such as object
recognition (which comprises both detection and classification of
objects), across the heterogeneous devices available at the Edge.
This includes not only domain-specific accelerators (e.g., Graphics
Processing Units (GPUs)), but also programmable networking de-
vices like Data Processing Units (DPUs), Field-Programmable Gate
Arrays (FPGAs), and ASIC switches [5].

By doing so, we would be able to understand how collaborative
inference across heterogeneous devices can benefit both applica-
tions and service providers, while contributing to an emerging
research trend: the in-network machine learning [5].

2 Problem Statement
Although many Machine Learning (ML) applications have been
proven to be feasible in the in-network computing paradigm, most
existing works focus on networking applications, especially net-
work anomaly detection. However, employing this strategy beyond
networking is worth exploring, particularly for data-intensive and
ultra-low latency applications [5]. In this sense, AR is a prime can-
didate for benefiting from in-network ML.

Nonetheless, object recognition inAR applications relies on large-
scale ML models, which are challenging to map to programmable
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networking devices due to their computing constraints. A possible
solution is to decompose the model into multiple components and
distribute them across several target devices. In this context, infer-
ence is performed by combining the intermediate results generated
by each device [5].

Fig. 1 illustrates the proposed solution concept, which is distin-
guished by its focus on heterogeneous devices, each with specific
requirements. This approach introduces unique challenges in ensur-
ing compatibility and efficient communication, crucial for achieving
an effective collaborative inference, such as:

1 Identifying the role of each device in the inference computa-
tion;

2 Distributing different blocks of a Deep Learningmodel across
different hardware;

3 Defining an optimal model partitioning criteria;
4 Orchestrating the distributed computing among heteroge-
neous devices without increasing the application latency
beyond the required limits;
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Figure 1: Collaborative inference conceptualization.

We will evaluate the collaborative inference effectiveness by as-
sessing the object recognition accuracy and latency, the application
frame rate, and the system energy consumption. Then, we will
verify how the collaborative inference energy efficiency compares
with traditional offloading strategies (e.g., GPUs and FPGAs). For
such, we will use an edge server equipped with 2 Intel Xeon 6430
CPUs, an Nvidia L40s GPU, an Nvidia BlueField 3 DPU, and an
Alveo U55C FPGA; all connected via a Tofino 2 switch with 400
Gb/s Ethernet interfaces.

3 Current research state
To address the previously identified challenges, we must first con-
vert a trained model into an Intermediate Representation (IR). For
such, we used ONNX [3], an open-source framework that repre-
sents Deep Neural Networks (DNNs) as Directed Acyclic Graphs
(DAGs). By iterating over these graph nodes, we can estimate their

computing complexity (in floating-point operations), energy cost,
and computing time on each potential target device (e.g., CPU, DPU,
GPU, FPGA). This enables us to derive partitioning criteria, split the
DNN into subgraphs, and execute them on heterogeneous hardware
with the ONNX runtime [1].

Distributing subgraphs across target devices using a single strat-
egy may not be efficient. As observed in Table 1, while the energy
cost of performing convolutions on the DPU is lower than the CPU,
the computing time is higher, failing to meet the AR application’s
required latency. Although the GPU seems optimal for offloading,
the FPGA offers comparable energy cost and computation time.

Table 1: ResNet18 DAG profiling example.

Energy cost

Node CPU GPU FPGA DPU (ARM)

/layer1.0/conv1 0.0254 W 0.0004 W 0.0009 W 0.0092 W
/layer2.0/conv1 0.0127 W 0.0002 W 0.0005 W 0.0046 W
/layer3.0/conv1 0.0127 W 0.0002 W 0.0005 W 0.0046 W
/layer4.0/conv1 0.0127 W 0.0002 W 0.0005 W 0.0046 W

Computing time

/layer1.0/conv1 0.0940 ms 0.0013 ms 0.0082 ms 0.5734 ms
/layer2.0/conv1 0.0470 ms 0.0006 ms 0.0041 ms 0.2867 ms
/layer3.0/conv1 0.0470 ms 0.0006 ms 0.0041 ms 0.2867 ms
/layer4.0/conv1 0.0470 ms 0.0006 ms 0.0041 ms 0.2867 ms

Comparing these devices directly may be unfair, given the GPU’s
superior computing capacity. However, our goal is not to prove
that programmable networking devices can surpass GPUs in per-
formance or efficiency but to demonstrate how they can execute
complex computations while meeting the AR application’s require-
ments. Since these devices are already expected to be part of the
networking infrastructure, utilizing them would save further ex-
penses with new hardware and energy.

Thus, throughout the PhD course, we will investigate how to use
reinforcement learning to determine the role of each target device
in collaborative inference and partition the model accordingly.
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