RESISTING: A New Fast-Reroute Mechanism with
Packet Distribution on P4-Programmable Switches

Daniel De Lima, Francisco Vogt, Alan Teixeira da Silva, Fabricio Rodriguez Cesen, Christian Esteve Rothenberg
€ Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil

Abstract—Equal Cost MultiPath (ECMP) is a routing solution
that optimizes bandwidth efficiency in network infrastructure by
using a hash algorithm on the switch’s data plane to distribute
packet flows across multiple paths. However, the hash-based
approach alone does not address link failures, making the de-
ployment of a failure recovery solution critical to prevent service
disruption and degradation. Fast Reroute (FRR) mechanisms
enable rapid recovery when a link fails on the data plane, and
integrating FRR with ECMP provides a more resilient solution.
In this paper, we introduce RESISTING, a novel ECMP-FRR
mechanism for programmable data plane devices. We evaluate
our method against the state-of-the-art FRR mechanism on pro-
grammable switches by simulating up to three link failures. The
results demonstrate that RESISTING achieves equal distribution
of packet flows across available links, with no packet losses.

Index Terms—Fast Reroute, FRR, ECMP, P4.

I. INTRODUCTION

Modern data center applications are characterized by strin-
gent performance requirements, including high throughput,
minimal packet loss, and reliable failover mechanisms to
address link and device failures [[1]]. Within this context, two
pivotal mechanisms — Equal Cost MultiPath (ECMP) and
Fast-Reroute (FRR) — are crucial in optimizing network
performance and ensuring rapid failure recovery across diverse
network architectures, including modern data centers. The
ECMP mechanism comprises two components: (i) routing
protocols running on the control plane pre-compute the best
and shortest paths, which are then installed into the ECMP
group on the switch’s data plane, and (ii) the ECMP group
utilizes a hash algorithm and employs a method to distribute
traffic based on the 5-tuple flow hash digest [2]. This approach
selects a single path for flow forwarding from a group of
multiple paths computed by routing protocols.

The failure recovery strategies that utilize routing applica-
tions within distributed data planes or centralized architec-
tures demonstrate significantly slower recovery processes than
rerouting mechanisms employed directly on the data plane [3].
To mitigate long periods of packet interruptions and service
degradation caused by slow solutions, FRR has emerged as
a solution on the data plane to enable quick failure recovery
in networking. This method reroutes traffic to a backup path
during unexpected failures [4]. It can be used with ECMP
instead of slower solutions to reroute traffic from an affected
path within the ECMP group to an operational path on the data
plane. That results in faster recovery times, reducing packet
flow degradation during failure events.

In P4-based architectures, a straightforward solution for
FRR [3]] entails continually redirecting all packet flows from
the failed port to a backup port using packet recirculations.
However, this approach can result in increased packet la-
tency and decreased throughput, particularly as the number
of failures rises, leading to a gradual escalation of packet
recirculations within the data plane [5]. The works [4], [6]
propose more efficient recovery methods that maintain la-
tency and throughput while minimizing memory usage on
programmable devices. However, both simple and advanced
FRR mechanisms may be unsuitable for ECMP link recovery,
as they redirect all affected packet flows to a backup path
without distributing them across other operational links in the
ECMP group. This can result in an uneven flow distribution
during failures, overloading the backup link and reducing
overall network resilience.

The present work proposes RESISTING (datacenteR
Equally coSt multlpath faSt re-rouTING): a new FRR mecha-
nism integrated with ECMP for programmable switches, aim-
ing to offer resilience, robustness, and packet flow distribution
in the data center after failure events recovery. Our mechanism
can recover from one or multiple simultaneous failures in
the links used by ECMP traffic balancing. Upon detecting a
failure in an ECMP balancing link, the architecture’s FRR
recovery process initiates removing the output port of ECMP
associated with the failed link through a port reordering routine
of the remaining operational links in the balancing. After
the recovery process, the packet flows previously affected
by the failure are redistributed evenly among the operational
balancing links. The main contributions of this paper can be
summarized as follows:

o The design of an FRR mechanism integrated with ECMP

for rapid failure recovery and optimal flow distribution;

o A P4 prototype implementation for BMv2 and Tofino

hardware with open-source artifacts for reproducibility E];

o An experimental evaluation showcasing RESISTING’s

performance and resilience under simultaneous failures.

II. BACKGROUND & RELATED WORK

A. Programmable networks

Traditional computer network architecture [7]], built upon
conventional devices made with “closed” and proprietary
technologies, has been essential for reliable data transmission

IGithub repository - https://github.com/ecmpfrr

https://github.com/ecmpfrr

through the past few decades. However, the addition of approx-
imately 3 billion internet users over the past 15 yearsE]caused
a dramatic rise in network requirements (i.e., new protocols,
functionalities, and capabilities) to address customer demands.
However, the traditional architecture is complex to adapt and
innovate [8]], and it depends on vendors to change networks.
The SDN [9] architecture emerged as a response to previously
mentioned limitations, introducing concepts such as separation
of data and control plane and programmable networks.
Despite advances in SDN architecture, the data plane had
a challenging intrinsic inflexibility. The authors in “Recon-
figurable Match Tables” (RMT) [10] proposed a solution to
address this limitation, introducing chip technology applied
in physical switch architecture able to enable data plane
programmability, in addition to the emergence of P4 language.

B. Fast-Reroute

Network resilience is a crucial attribute that ensures the
ability of a communication infrastructure to deal with failure
scenarios while trying to maintain an acceptable level of
service quality [11]. In our work, network resilience is directly
related to the mechanisms and strategies for fault recovery,
which can be implemented in both network devices’ control
and data planes of network devices. In general, resilience
mechanisms in the data plane operate via hardware, enabling
recovery processes in milliseconds or even microseconds [3].
The FRR mechanism provides quick connectivity restoration
without using the control plane [[12], minimizing packet degra-
dation caused by network interruptions. Conversely, software-
based recovery in the control plane is slower, potentially taking
tens to hundreds of milliseconds, depending on the network
scenario and method employed.

C. ECMP load balancing

ECMP is a routing scheme that distributes packet flows
among links with equal cost [[13]. Initially, it learns routes
to a destination in the control plane or SDN controller. Then,
multiple alternate paths are installed within the data plane’s
ECMP mechanism. ECMP randomly distributes packet flows
among links upon route provisioning using a hash algorithm.
To address failures, integrating ECMP with FRR can enable
ECMP fast recovery while maintaining the load balancing [3]].

D. Related Work

Concerning the P4 language, there isn’t a native FRR
primitive in software and hardware, and the network operator
is responsible for developing the FRR mechanism. An ap-
proach involves using packet recirculation functionality: when
a failure event is detected, the structure implemented through
tables or conditionals recirculates affected packets in the data
plane, allowing them to start a new processing cycle to find
a backup path. This technique increases overhead and latency
due to the continuous packet recirculation on the device [4].

The work in [6] introduces bit-indexed explicit replica-
tion (BIER), a multicast routing concept proposed by the

2ITU DATA HUB 2024 - https://datahub.itu.int/

IETF RFC 8279 [14]]. BIER simplifies router multicast routing,
reducing resource (CPU and Memory) consumption compared
to protocol-independent multicast (PIM). The authors empha-
size implementing BIER in P4 and integrating two recovery
mechanisms: IP-FRR for unicast traffic protection and BIER-
FRR for multicast. These mechanisms redirect affected packet
flows to backup paths. In 1:1 contingency scenarios, this
solution can be effective. However, they do not distribute
affected packet flows among multiple operational paths in
scenarios with traffic balancing.

PURR [4], [5] is a FRR primitive applied to the pro-
grammable data plane in P4 that efficiently recovers one or
multiple simultaneous failures without compromising through-
put and latency and implements a table in the ingress pipeline
that conducts a ternary search for the next operational output
port. Then, it redirects packet flows affected by the failure to
the available port, regardless of the number of simultaneous
failures. However, the adopted strategy involves redirecting all
packets from the affected path to a single backup path.

The authors in [15] proposed an approach for failure re-
covery that reroutes traffic directly in the data plane and
configures a set of forwarding rules in the control plane to
handle failure scenarios. Although considering alternative rules
associated with a failure scenario in the control plane, the
suggested approach lacks an ECMP scenario and an actual
device implementation, such as programmable switches or
SmartNICs to verify the performance.

In environments with heavy traffic where load balanc-
ing services are necessary to prevent congestion and ensure
efficient link usage, the recovery strategy, which redirects
affected packet flows to a single backup path, may result in an
imbalance in the distribution of packet flows among the links.
Furthermore, it could exacerbate saturation conditions on the
backup path during failure events.

ITI. RESISTING

Our work encompasses the development of two P4 imple-
mentation models: one for the BMv2 platform and another
specifically tailored for Tofino Native Architecture (TNA).
While the P4 algorithm developed is consistent across both
platforms, differences arise due to distinct architectural types.

A. Architecture & Implementation

The architecture proposed offers a set of P4 features,
including an FRR mechanism dedicated to ECMP recovery
as a primary capability. Additionally, we provide packet
forwarding based on IPv4 and TAG, an ECMP mechanism
for traffic load balancing, a temporary packet recirculation,
and a technique for transmitting data via additional headers
inserted into packets between the ingress and egress pipeline.
These P4 components are incorporated into four types of
data plane functionality: Packet forwarding, Load balancing,
Recalculation, and Recovery.

1) Packet Forwarding: This functionality consists of com-
ponents responsible for handling packet processing definitions
on the data plane, such as method parsing, IPv4 routing, and

https://datahub.itu.int/

failure detection. Under normal conditions, without failures,
the packet goes through parsing stages to analyze the headers
and extract all relevant fields from layers 2-4, which will be
used in the pipeline process.

The routing component decides where to forward the packet
by analyzing the destination IP address. Consider an example
where the next-hop is a local host connected to its own switch;
in this case, the routing stage sets an appropriate outgoing
port. After that, the packet forwarding flow proceeds to the
port status table, which controls the operational status of the
outgoing port by determining whether the port is up or down.
This mechanism is controlled by rules installed via the control
plane. In another context, if the packet needs to reach a remote
host in another switch, a TAG, an identification number, is
added to the destination MAC in the Ethernet frame [16].
This TAG labels the destination switch and enables routing all
packets between top-of-rack switches within the infrastructure,
as seen in a Clos leaf-spine topology [[17]]. Then, the packet
forwarding process proceeds to the load balancing step.

2) Load Balancing: In general, load balancing approaches
in P4 are based on tables that perform lookups for keys from
header fields or metadata. The result of this operation can be
an outgoing port, which represents a static rule installed in the
data plane. Additionally, the number of next hops parameters
controls how many paths the hash algorithm can balance. Thus,
during process failure recovery, when there is a need to update
outgoing ports and the number of next hops parameters from
the load balancing tables, the control plane acts as the failure
recovery mechanism by modifying rules in the data plane.
However, this process is slower than the FRR mechanism.
To address this challenge, we designed a solution based on
registers responsible for storing outgoing ports and the number
of next hop parameters, enabling any changes through a failure
recovery mechanism applied in the data plane.

In our work, load balancing utilizes a table to perform
lookups for key values, similar to the P4 load balancing
approaches mentioned earlier. However, the operation results
in link values instead of outgoing ports. The outgoing ports
are stored in another set of components, built by tables and
registers, denominated as forwarding_tag. Each link number is
mapped to a dedicated forwarding_tag component, which
stores an outgoing port used by ECMP.

Another adaptation involves creating a specific register,
named max_links, to store and control the number of
next-hop parameters. Thus, the FRR implementation can
update outgoing ports and the max_links value during
process failure recovery. Figure [T| depicts the ECMP Hash and
forwarding_tag abstraction. In this context, packet flows
incoming from the routing stage ingress the Hash table for
load balancing processing, taking into account the installation
of all rules into components, including TAG routes, four links
(0-3), four outgoing (P1-P4), and defining the total number of
next-hops as 4.

The algorithm first performs a TAG lookup on the table
to identify the destination switch for the packet flow; in this
example, the switch is identified as 10. This value represents

ECMP
‘ INPUT ‘HASH‘ROUTING‘LINKS‘ ‘REGISTERS‘

2] ;\4500\\«;”@” 200041 [1000.11 H >0 G P1 2]
2] 2‘3001HGHZ1H 200.196.1.10] 200.19.1.110 ke 10 > 1 ; P2 EE
BB o) :[2508]17][53] 11.0.0423 [172.16.0123 "‘ »2 —» P3 R
FEE) | [ooo|[6 22| 192.168.0.10] [192168.02 »3 —» ps |EE

‘ Max Links ‘ ‘

Fig. 1. ECMP hashing and registers.

an ECMP group associated with four links and ports. Then,
the hash algorithm uses packet fields as input parameters to
calculate the hash result, which maps to a specific link among
the four balancing options and is associated with an outgoing
port. Lastly, the flows are directed to the respective interface.

The port_status component is a table that stores the
operation status of outgoing ports from the switch. This
approach is a solution [[12] that allows simulating port failures
in the BMv2 and Tofino switches. The packets proceed to the
last stage when an outgoing port is up. Then, the packet header
fields are rebuilt, and the packets are directed to the physical
port of the switch. However, if the port is down, it triggers
the beginning of the FRR process. At this stage, the affected
packet flows are not dropped; instead, they are redirected to
the FRR process. The flows traverse the ingress and egress
pipelines within this process through the recirculation method.

Highlighting that packets are recirculated twice, the FRR
header is added to all packets to indicate their status in
recovery. Only the first packet detected after a failure assumes
the responsibility for transmitting data between the ingress
and egress pipeline components during the FRR process. This
process does not affect other flows, and those unaffected by
the failures continue to follow the standard packet forwarding.

3) Recalculation: Once a port has failed, the architecture
must take action to remove the port from the operation, reor-
ganize available ports, and adjust the number of links within
the ECMP mechanism. To accomplish this, we implemented
a similar ECMP group structure, incorporating the same links
associated with outgoing ports. In our design, we refer to these
tables and registers as FRR_Port_Out.

A scenario depicting RESISTING process is shown in
Figure 2] The port 3 (P3) fails, with the following link-to-
port associations: (L0 — P1), (L1 — P2), (L2 — P3),
(L3 — P4), (L4 — P5) and (L5 — P6). During the
recalculation process, when the first packet arrives from the
ECMP step, carrying information about the link position
failure, the FRR_Port_Out tables identify the link positions
as L2 with a port down by inspecting the appropriate FRR
header field and triggering the recalculation processes.

4) Recovery: Once the algorithm identifies the port that
needs recovery, it initiates a port migration process, which
involves moving ports from the last link position to the next
link position until they reach the link position corresponding
to the port failure. The process concludes with the following
assignments: (L2 — P4), (L3 — P5), (L4 — P6), and

[> Recirculation

(519 512 (513 514) 515) 516) (519 512 513) 514) 515) 516) (511) 512 (513) 514) (515) 516)
42%| ' 40%) '37%| :30%| :39%] |40 0%160%{|37%| '39%' 0% 0%

0%] 81%|; 80%] 77 0% 0%

X X X
p1 P2 P3| P4l P5 PG
RESISTING ‘

X X X
p1 P2 P3| P4 P5 PG
PURR ‘ ‘

p1| p2| P3| P4 p5| P
ECMP ‘ ‘

futeleluleliluiisiutikutubeiebebebe RSOOSR
' H
Pots First :ifs Vo o| Pt v o] 1
5| P6 | packet |5 P2ss | 3 e m e
P5 || 2 |FRR ;
@ : pj J : :: > 3 g 2| P m ﬁ> Hasing | 2 | P4
£ (i3 3| Pa 3| P5
S &) ﬁ>z P4>¢>§ e m o re
1] P2 1] P2 § A
[Pa|: 5| Ps 5 | 255
of m o| M : Ports Updating Load
: Max_links i

Recalculating Recovery

Fig. 2. ECMP-Fast-Reroute mechanism.

(L5 — P255) — the ports of links LO and LI do not
require updates in this case. In sequence, the algorithm writes
a new port order in the header FRR fields of the first packet.
Subsequently, the packet follows to the next stage, referred to
as updating, through the recirculation method. This component
comprises a set of tables responsible for updating ECMP
within the ingress pipeline by copying the new port order from
the packet to the appropriate registers forwarding_tag
while simultaneously subtracting the value of max_links
to reduce the number of link operations applied in hash cal-
culation. After this update, the ECMP group begins operating
with the link-to-port associations (L0 — P1), (L1 — P2),
(L2 — P4), (L3 — P5) and (L4 — P6), excluding the port
down (P3), resulting in a total of five links (LO - L4) in the
hash calculation.

The recovery process in the Tofino prototype is similar to
that applied in BMv2, as illustrated in Figure [2] However,
when the hash function results in traffic being forwarded to the
last link (or last links if there are more failures) associated with
port 255 (P255), an additional routine is triggered to redirect
the traffic to an operational port. The default_path table,
located following the forwarding_tag forwarding tables
in the ingress pipeline, intercepts traffic to direct it to a port
that always remains operational, as long as at least one port
is operational in the ECMP. This approach ensures that traffic
is not discarded, even in cases of subsequent new failures.

B. Tailoring for Tofino

The main functional constraint encountered in the TNA
platform was the inability to reduce the number of operational
links used in the hash function through the data plane. This oc-
curs because the ECMP mechanism available on the platform
does not allow storing the parameter value defining the number
of links in ECMP via registers - which is crucial for the
recovery process as it is manipulated to reduce the outgoing
paths used in the modular operation of the hash algorithm.
Thus, we developed a second prototype with an additional
structure for the Tofino implementation that redirects traffic
from the link that cannot be subtracted in ECMP to an
available output port.

IV. EXPERIMENTAL EVALUATION

In order to assess the performance, resilience, and overhead
of the proposed mechanism, we performed different evalua-
tions in the simulated and real environment. Our experimental
evaluation has the following objectives:

Leaf1 Leaf1 Leaf1

B Flows > B Flows >
[€)] (b) (©)

Fig. 3. Resilience simulation scenarios.

A
Flows >

1) Evaluate the resilience of RESISTING against PURR [4]],
the state-of-the-art in FRR, when subjected to simultane-
ous failures.

2) Evaluate the overhead introduced by RESISTING in
terms of recirculations during the recovery process and
in terms of resource utilization on the Tofino Switch.

To achieve these objectives, we set up two experimen-
tal environments using P4-programmable Ethernet switches:
one with Mininet and the software switch BMv2 (simulated
environment) and another with an Intel Tofino switch (real
environment). Next, we discuss these two environments, the
experiments performed, and the results obtained.

A. Resilience Experiment

This experiment evaluates the proposed architecture’s re-

silience in simulated ECMP link failures compared to PURR,
the current state-of-the-art.
Experimental Setup. The experiments use a Mininet emulator
featuring a Clos topology. The Mininet environment was
established to run the network topology for each FRR mech-
anism. The simulated network balances packet flow among
operational uplinks while maintaining an occupancy of less
than 50% per link. Thus, starting from this baseline scenario,
failures are applied to the uplinks of switch leaf 1, and
subsequently, the RESISTING and PURR mechanisms are
activated for recovery. Each of the six uplinks can support
a maximum of 1000 flows, totaling 6000 packet flows. The
host simultaneously generates 2400 distinct TCP packet flows,
aiming to allow ECMP to achieve a balanced distribution
among the six uplinks with an approximate occupancy of 400
flows on each uplink (i.e., about 40% occupancy).

In this scenario, PURR employs a recovery strategy that
redirects all packet flows from unavailable links to a single
backup link, disregarding the balance of affected packets.
On the other hand, our solution utilizes a recovery method
that removes the links affected by failures from the ECMP
mechanism, enabling the continued distribution of packet
flows among ECMP operational paths. Equation (I) on Traffic
Delivery (TD) calculates the resilience for RESISTING and
PURR in all failure simulations, computing the difference be-
tween Value Demanded (VD) and LOSS, where VD represents
the total packet flow sent, and LOSS represents the packets
discarded.

VD -LOSS

TD
VD

(D

TABLE I
AVERAGE TRAFFIC DELIVERY T'D 4y ¢ RATES

. TDavg (%)
Mechanism 1 Failure | 2 Failures | 3 Failures
PURR 100% 96% 86%

RESISTING 100% 100% 100%

Equation (2) computes the average of TD (T'D 4,4) values
obtained for all simulations by dividing the sum of TD results
by the total number of evaluated network topologies (ENT).
In the experimental context, network topology refers to a
measured traffic scenario.

TPavs = ENT @

Figure [3| demonstrates the execution of TD calculations by
examining three emulated. Initially, in Figure [3p, the host
connected to leaf 1 generated a demand for 2400 distinct flows.
This corresponds to the VD base for all tests. Subsequently,
the ECMP performed a distribution of packet flows among the
uplinks in the following proportions: 429 (42%) for P1, 406
(40%) for P2, 371 (37%) for P3, 393 (39%) for P4, 399 (39%)
for P5, and 402 (40%) for P6. Each link supports a maximum
of 1000 flows. If the link exceeds 100%, we consider the
overrun discarded.

In Figure Bp and Figure [3c, simultaneous failures were
applied to ports PI, P5, and P6. After the failure event, the
PURR recovery mechanism redirected packet flows from the
three uplinks to port P2, as illustrated in Figure Bp. As a result,
port P2 exceeded 100% occupancy, resulting in a TD of 0.735.
This means only 73% of the VD (2400 flows) were delivered,
with a LOSS of 648 (27%) flows. In Figure 3, after detecting
the failures, RESISTING removed ports P/, P5, and P6 from
the ECMP balancing, allowing the demand from the three
unavailable uplinks to be redistributed among the remaining
links, avoiding packet flow overload and delivering 100%.
Resilience Results. For both RESISTING and PURR mech-
anisms, 1, 2, and 3 failures were applied to 6, 15, and 20
simulations, respectively. Initially, after the completion of TD
calculations, the results were applied to (2, which calculates
the Average TD of the experiment. Table [I] shows the results
of both strategies. Regarding a single failure, RESISTING
and PURR achieved a resilience level of 100%, delivering all
packet flows in the simulations, regardless of which uplink
port suffered unavailability in leaf 1.

In the scenario with two failures, PURR showed loss results
in 6 port combinations: (PI, P2), (P1, P6), (P2, P3), (P3, P4),
and (P4, P5). The average TD obtained was 96%. Therefore,
4% of the average flows suffered a loss. In this scenario, our
architecture delivered 100% of the demand for all possible
port combinations during the simulations.

Finally, in the drastic scenario with three failures, only
two failure combinations did not suffer loss by PURR: (P],
P3, P5) and (P2, P4, P6). The other simulations showed a
loss; for this reason, the average degradation result was 14%,
while the RESISTING did not present packet flow loss in the

Jl——

262 26/ 2600 203 202 201 221 222 223 27/0 27/1 272
R P182 P181 P180 P27 P26 P25 P4l P42 P43 P172 P173 P174

sl W e

Leafl Leaf2
P128 TOFINO P129
A Wedge 100BF-32X i
1 ' Pkt
| UDP UDP! et
PO. v [P
I I
Intel Server Intel .
Sender 106 Trex/DPDK 106 Receiver

Fig. 4. Experimental topology for overhead experiments.

20 evaluated topologies. RESISTING demonstrated superior
resilience capacity, especially during three-failure events.

B. Overhead Experiment

The overhead experiment measures the total number of
packets recirculated from the packet flows affected by failures
in ECMP links during the RESISTING recovery process.
Experimental Setup. These simulations use a server to gen-
erate UDP packets of large (1514 B), medium (814 B), and
small (114 B) sizes for 10 seconds from network interface
PO (h1) to network interface P1 (h2), covering four different
transmission rates: 100 Mbps, 1 Gbps, 5 Gbps, and 9 Gbps
while applying 1, 3, and 5 simultaneous failures. This exper-
iment uses the Intel Tofino switch hardware and one physical
server to create a physical topology as illustrated in Figure [4]
The Tofino is a 3.2 Tbps Wedge 100BF-32X running Intel’s
Software Development Environment (SDE) version 9.9.0. The
server is a 2.20 GHz Intel Xeon CPU running DPDK and
contains 62 GB of RAM and an X552 10 GbE SFP network
interface. The switch is a single physical switch emulating
two leaves (leaf 1 and leaf 2). We benefit from Tofino’s multi-
pipeline support with appropriate table entries. The leaves are
physically connected with six 10 Gbps uplink cables. Traffic
is generated by a Trex/DPDK on the server side with two 10
Gbps network cards that simulate host transmitting (Tx) and
receiving (Rx). Our prototype enables leaf 1 to perform ECMP
balancing and FRR, configured with six links (LI-L6), each
associated with logical ports P25, P26, P27, P180, P181, and
Pi182.

Overhead Results. A correlation between packet size and
the number of applied failures can be observed in Figure [3]
When traffic is subjected to fault conditions, as packet size
decreases and the number of failures increases, the number
of recirculated packets increases. It is important to note that
increasing the transmission rate from 100 Mbps to 1 Gbps, 5
Gbps, and 9 Gbps resulted in a proportional increase in the
total number of generated packets. However, this variation in
transmission rates did not affect the number of recirculated
packets, which remained the same across all tested rates.
For example, with 114-byte packets, 1 million packets were
generated at 100 Mbps and 95 million at 9 Gbps, yet the
number of recirculated packets remained the same during each
failure event. The overall resource usage of RESISTING P4

30 2 Small Packets (114 B)
ARZA Medium Packets (814 B)
W Large Packets (1514 B)

25
2
9]
YA
® 20
o
°
]
© 15
S5
=
g 10
< n

5 SISISIeIY
0000 0
0 0000 000
1 3 5
Failures

Fig. 5. Relationship between number of failures and recirculated packets.

code running in the Tofino hardware is depicted in Figure [6]
It is possible to observe the distribution of resources along
the pipeline stages. Notably, none of the resources overlap the
30%. Having this in mind, the resisting code can be allocated
to other network functions or implementations that do not
restrict the use of the network device.

C. Discussion

The resilience results in Section [[V-A] show that while both
strategies effectively handle a single failure, only RESISTING
maintains performance in scenarios with multiple failures.
In contrast, PURR experiences packet loss with two and
three failures. This occurs because RESISTING efficiently dis-
tributes flows across multiple links, whereas PURR redirects
them to a single link, leading to congestion and packet loss
in multi-failure scenarios. This highlights not only the supe-
rior resilience of RESISTING but also its greater scalability
compared to PURR.

Although RESISTING uses recirculations in its recovery
process, experiments in Section [[V-B| show that recirculations
account for only 3210~7% of the total packets in the worst
case. Additionally, Each packet can be recirculated up to twice,
and with each recirculation taking ~ 500ns, the maximum
added delay for a packet is ~ 1000ns. Finally, RESISTING
demonstrates low resource usage, enabling it to coexist with
other P4 solutions like QoE monitoring or microburst

detection [19].

100

Memory -
Tables -

ALU -

Percentage (%)

Hash -

' ' ' ' | | i | | ' | | -0

1 2 3 4 5 6 7 8 9 10 11 12
Pipeline Stages

Fig. 6. RESISTING resources usage in the Tofino Switch.

V. CONCLUSIONS AND FUTURE WORK

This study proposes a new FRR method that works in
conjunction with ECMP on programmable switches using the

P4 language, removing the link affected by a failure by reallo-
cating the ports of the remaining links in the ECMP. After the
failure recovery, packet flows are evenly distributed among
multiple operational links in the balancing. As future work,
we plan to implement RESISTING in different architectures
and devices (e.g., SmartNICs), introducing more sophisticated
balancing mechanisms that consider packet flow size and/or
transmission rate as additional criteria for flow distribution,
integrating methods for detecting the operational state of ports
or links with the recovery architecture.

ACKNOWLEDGMENT

This work was supported by Ericsson Telecomunicagdes
Ltda. Z, and by the Sao Paulo Research Foundation @ rapesp,
grant 2021/00199-8, CPE SMARTNESS (2,

REFERENCES

[1] F. Rhamdani et al., “Equal-cost multipath routing in data center network
based on software defined network,” in 6th ICoICT, 2018, pp. 222-226.

[2] L. Champagne and B. Donnet, “Smoothie: Efficient and flexible load-
balancing in data center,” in NOMS. IEEE/IFIP, 2024.

[3] M. Chiesa et al., “A survey of fast-recovery mechanisms in packet-
switched networks,” IEEE Communications Surveys & Tutorials, vol. 23,
no. 2, pp. 1253-1301, 2021.

[4] M. Chiesa, R. Sedar er al., “PURR: a primitive for reconfigurable fast
reroute,” In Proceedings of the 15th CoONEXT 19, pp. 1-14, 2019.

[5] R. Sedar et al., “Supporting Emerging Applications With Low-Latency
Failover in P4,” in Proceedings of the 2018 NEAT Workshop. ACM, 8
2018, pp. 52-57.

[6] D. Merling et al., “P4-based implementation of BIER and BIER-FRR
for scalable and resilient multicast,” Journal of Network and Computer
Applications, vol. 169, p. 102764, nov 2020.

[7] Cisco, “Cisco visual networking index: Forecast and trends, 2017-2022,”
Cisco Systems, Tech. Rep., 2019.

[8] L. Csikor et al., “High availability in the future internet,” in The Future
Internet. Berlin: Springer Berlin Heidelberg, 2013, pp. 64-76.

[9]1 L. Yang et al., “A survey on network forwarding in software-defined
networking,” Journal of Network and Computer Applications, vol. 176,
p. 102947, 2021.

[10] P. Bosshart et al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for sdn,” in Proceedings of the
ACM SIGCOMM 2013 Conference, 2013, p. 99-110.

[11] J. Sterbenz et al., “Evaluation of network resilience, survivability, and
disruption tolerance: Analysis, topology generation, simulation, and
experimentation: Invited paper,” Springer Telecommunication Systems,
12 2011.

[12] G. V. Luz et al., “InFaRR: Um algoritmo para reroteamento rapido em
planos de dados programaveis,” in SBRC, 2022.

[13] C. Hopps, “Rfc2992: Analysis of an equal-cost multi-path algorithm,”
USA, 2000.

[14] 1. Wijnands et al., “Multicast Using Bit Index Explicit Replication -
BIER,” RFC Editor, RFC 8279, November 2017.

[15] J. A. Marques et al., “Responding to Network Failures at Data-plane
Speeds with Network Programmability,” in NOMS 2023 IEEE, 2023,
pp. 1-10.

[16] A. Greenberg et al., “VL2,” ACM SIGCOMM Computer Communication
Review, vol. 39, no. 4, pp. 51-62, aug 2009.

[17] M. Alizadeh and T. Edsall, “On the data path performance of leaf-spine
datacenter fabrics,” in 2013 IEEE 21st HOTI, 2013, pp. 71-74.

[18] F. Vogt, F. R. Cesen, A. G. deCastro, M. C. Luizelli, C. E. Rothenberg,
and G. Pongricz, “QoEyes: towards virtual reality streaming QoE
estimation entirely in the data plane,” in 2023 IEEE NetSoft. 1EEE,
2023, pp. 267-271.

[19] F. G. Vogt et al., “Innovative network monitoring techniques through
in-band inter packet gap telemetry (IPGNET),” in Proceedings of the
5th EuroP4, 2022, pp. 53-56.

	Introduction
	Background & Related Work
	Programmable networks
	Fast-Reroute
	ECMP load balancing
	Related Work

	RESISTING
	Architecture & Implementation
	Packet Forwarding
	Load Balancing
	Recalculation
	Recovery

	Tailoring for Tofino

	Experimental Evaluation
	Resilience Experiment
	Overhead Experiment
	Discussion

	Conclusions and Future Work
	References

