
eZtunnel: Leveraging eBPF to Transparently
Offload Service Mesh Data Plane Networking

Arthur J Simas, Fabricio E Rodriguez Cesen, Christian Esteve Rothenberg
Universidade Estadual de Campinas (UNICAMP)

Campinas, Brazil
a249927@dac.unicamp.br, f163682@dac.unicamp.br, chesteve@dca.fee.unicamp.br

Abstract—Cloud-native applications, characterized by scalabil-
ity, resilience, and flexibility, adopt microservices architectures to
decompose applications into smaller, independently manageable
services. Although microservices offer significant benefits, this
architectural approach introduces challenges in service-to-service
communication, commonly relying on advanced orchestration
and communication frameworks such as Kubernetes and Istio,
respectively. However, the added complexity imposes substantial
overhead by introducing longer packet processing paths. This
paper discusses performance bottlenecks arising from service
meshes and proposes eZtunnel to address some of the identified
challenges. Leveraging extended Berkeley Packet Filter (eBPF) to
transparently offload networking traffic, the elongated network
path is bypassed, optimizing resource utilization and enhancing
application performance. Experiments show that eZtunnel can
reduce median latency over 20% and jitter to almost 10%.

Index Terms—Service Mesh, Kubernetes, eBPF, Offloading

I. INTRODUCTION

In the rapidly evolving landscape of cloud computing,
the adoption of cloud-native technologies represents a
fundamental shift in how applications are developed, deployed,
and managed [1], [2]. These applications are commonly based
on microservices architectures to make the most of cloud
environments’ scalability, resilience, and flexibility.

To manage a large number of microservices, Kubernetes and
a service mesh are often used to, respectively, (i.) orchestrate
containerized applications across diverse environments [3]
and (ii.) provide advanced inter-service communication
features, such as service discovery, load balancing, encryption,
authorization, and observability [4].

Service meshes often implement the sidecar deployment
mode, which injects a proxy beside each service. This
mode dramatically degrades performance, particularly when
the Kubernetes cluster orchestrates many services [5], [6].
To overcome this problem, some service mesh proposals
introduce the concept of a per-node shared agent [7]. However,
both deployment modes present increased overheads due to
a longer communication path. As highlighted in Fig. 1, it
may result in higher latency and CPU consumption, ultimately
degrading the Quality of Service (QoS) [5].

(a) Latency

(b) CPU usage

Figure 1: Measurements of latency and CPU overheads caused
by using Istio Service Mesh compared to the baseline scenario
without a service mesh. The Hotel Reservation [8] and Online
Boutique [9] applications were used as workload under three
different queries. Adapted from [5].

The root cause of this issue is the excessive traversals of the
kernel network stack caused by the use of middleware between
services, which results in inefficient resource usage [6].

To this end, we propose a transparent offloading technique
to enable efficient communications in service meshes,
independent of the proxy deployment mode (sidecar or per-
node shared agent). Our proposal leverages the extended
Berkeley Packet Filter (eBPF) as the key technology to address
and mitigate the problem. This approach involves deploying
eBPF programs to intercept and redirect packets at the kernel
level, bypassing the kernel network stack. Our experiments
show that, compared to the default setup of a well-known
service mesh, Istio [4], we can reduce request latency by up
to 21.35% and jitter by 9.78%. In summary, the following are
the key contributions of this paper:

• We investigate the state-of-the-art service mesh offloading
to find open gaps and improvement opportunities;

• We present a transparent offloading method based on
eBPF to improve microservice communication in diverse
service mesh environments;



• We conduct an experimental evaluation of our implemen-
tation on a testbed deployed with Kubernetes and Istio to
assess our approach’s potential to alleviate service mesh
overheads.

The remainder of this manuscript presents the background
and related works (Section II), the proposed offloading strategy
design and implementation (Section III), and its respective
experimental results (Section IV). Finally, we conclude and
discuss the future work (Section V).

II. BACKGROUND AND RELATED WORK

In this section, we introduce the background of service
meshes, the ambient mesh alternative, and eBPF, then relate
our work to the prior efforts found in the literature.

A. Service Mesh

The granularity and dynamism of microservices introduce
challenges in service-to-service communication, security, and
observability [10]. To address these complexities in cloud-
native applications, service meshes have been introduced.

A service mesh, usually implemented with sidecars
(i.e. proxies alongside each service instance), provides a
dedicated software layer for handling advanced inter-service
communication features without altering the application code.
Fig. 2 presents a typical design of a service mesh.

Figure 2: Sidecar-based service mesh architecture.

B. Ambient Mesh

The majority of service mesh data plane implementations
use sidecars. Deploying a sidecar per-service results in
underutilization of resources across the cluster as the number
of services increase. The per-node shared agent design, called
ambient mesh in Istio, aims to address this issue [7].

As shown in Fig. 3, a shared agent detaches the growing
relation between service and sidecar count, allowing the
Kubernetes cluster to schedule more services without incurring
performance penalties due to an injected proxy per service.

Figure 3: Per-node shared agent service mesh architecture.

C. eBPF - extended Berkeley Packet Filter

The eBPF technology enables a safe and efficient execution
of custom programs within the Linux kernel, extending its
capabilities without recompiling the kernel [11].

There are different eBPF program types available, each
specific for a given aspect of the kernel. They can be attached
to various pre-defined hooks, including syscalls, function entry
or exit, tracepoints, network events, and custom hook points.

This flexibility makes diverse use cases possible, notably
in networking. It can be used to perform packet filtering,
manipulate network traffic, and monitoring, allowing real-time,
low-latency processing of network packets without forwarding
them to user-space processes.

In this regard, eBPF Maps allow programs to exchange data,
which are key-value data objects stored in-kernel. User-space
programs are also allowed to access these kernel structures.

D. Prior work

The landscape of network offloading is rapidly evolving,
driven by the need to enhance the performance, security, and
scalability of Kubernetes and other cloud environments.

Within this context, various approaches have been explored
to optimize networking and reduce overheads. X-IO [12],
a high-performance I/O interface, aims to eliminate kernel
networking overheads and contention of microservices using
shared memory processing. Although it offers a 2.8∼4.1×
latency improvement, it requires changes to the application
code and is unable to run alongside a service mesh, lacking
many benefits provided by it.

Another proposal, SPRIGHT [13], a serverless framework,
makes use of shared memory and eBPF to improve
the scalability of the data plane. It exhibits competitive
performance results of 53× latency reduction and 27× CPU
usage savings compared to Knative. Despite that, it also suffers
from the lack of service mesh features.

As an alternative, Cilium [14], a sidecar-free service mesh,
heavily uses eBPF to implement its features. The downside
is that it requires the usage of its own Container Network
Interface (CNI). In this sense, clusters deployed with other
CNIs cannot use Cilium.

Finally, [6] presents a network optimization based on eBPF
to bypass the kernel network processing. The work improves
request latency by up to 21% for 90% of requests. Still, it only
works for Istio in sidecar mode.

Compared to related work, our eZtunnel proposal offers
a better approach to optimize service mesh data plane
networking. It works with the newest service mesh proposals,
like ambient mesh, offloads the network transparently, and
does not require redeployment of the cluster.

III. EZTUNNEL: DESIGN AND IMPLEMENTATION

This section presents eZtunnel, a transparent service mesh
data plane networking offload using eBPF. We introduce the
architecture overview, the design, and the implementation.



(a) Default packet path

(b) Packet path with our proposed solution

Figure 4: Packet path of a per-node shared agent service mesh
with and without our proposed solution.

A. Architecture Overview

The core problem we aim to address is the excessive
traversal of the kernel network stack. Fig. 4a depicts the
packet’s path from a client to a server process in a shared
agent-based service mesh environment.

Initially, a message is written to socket (1). It traverses
the network stack down to the network interface, where a
virtual bridge forwards the packet to the respective interface
of the agent’s pod. It then traverses again the network stack,
and socket (2) delivers the message to the process. The same
process is repeated from socket (3) to socket (4) to send the
response back from the server to the client.

Our design to shorten the packet’s path involves a socket
redirection mechanism based on eBPF, as illustrated in Fig. 4b.
Instead of traversing the network stack, network interfaces,
and virtual bridges, as the packet is written to the socket, it is
directly redirected to the other socket’s end and delivered to the
process, entirely bypassing the intermediary kernel network
processing. This mechanism works regardless of the service
mesh deployment mode (e.g., sidecar-based or per-node agent).

B. Design

To route messages between sockets and skip the Linux
network stack, sockets must first be captured, stored, and
monitored for messages.

Figure 5: Socket redirection workflow using eBPF.

A SockOps program is attached to cgroups, which responds
to socket events (e.g., socket established). It allows us to
change socket parameters and opportunistically store them in
an eBPF Map [15]. eBPF provides a variety of Maps, including
SockHash, which we use to store sockets in a hash table with
a user-defined key.

A SkMsg program is attached to SockHash to handle
messages sent through one of the stored sockets, i.e. when
‘sendmsg’ and ‘sendfile’ syscalls are executed on sockets
that are part of the Map the SkMsg program is attached to.

Fig. 5 exemplifies the workflow. 1 When the server socket
is created, it is captured by SockOps program and 3 stored
in SockHash Map. 2 The client socket is also captured and
3 stored in the Map. 4 When a message is written to the

socket, 5 the SkMsg program attached to the Map is triggered
and 6 redirects it to the corresponding socket, 7 delivering
it to the server process.

C. Implementation

The implementation is based on the aya library [16], an
eBPF library built entirely in Rust. It offers a compile-once,
run-anywhere solution independent from the Linux distribution
or kernel version. The compilation process uses cargo, and the
crates bpf-linker and bindgen-cli. When the user-space code
is executed, the compiled eBPF program is loaded into the
kernel without requiring additional tooling.

IV. EXPERIMENTATION EVALUATION

In this section, we present the experimental settings, metrics
of interest, and results obtained from our implementation.

A. Testbed setup

a) Server Specifications: The server used to run the
experiments has the following settings:

• CPU: AMD Ryzen 7 4700U, base clock 2 GHz, boost
clock up to 4.1 GHz, 8 cores, 8 threads;

• RAM: 2x 8 GB, DDR4, 2667 MHz;
• Swap Memory: 22 GB;
• Storage: SSD NVMe 256 GB;
• Operational System: Fedora 36;
• Kernel: Linux 6.2.15, cgroup2 enabled.



Figure 6: Latency distribution plot.

Table I: Latency quartiles values summary

Latency
Mode Scenario p25 (µs) p50 (µs) p75 (µs)
No Service
Mesh

Baseline 443.98 481.83 529.71
Optimization 368.61

(-16.98%)
399.15
(-17.16%)

452.57
(-14.56%)

Ambient
Mesh

Baseline 442.69 485.82 537.12
Optimization 351.51

(-20.60%)
382.10
(-21.35%)

423.66
(-21.12%)

b) Kubernetes Cluster: The cluster is composed by a
single node, running Kubernetes v1.29.2.

c) Service Mesh: We setup the Kubernetes Cluster
with the Istio Service Mesh v1.21.2. Istio supports both
sidecar (default) and per-node shared agent (ambient mesh)
deployment models.

B. QoS Metrics

Our experiment observed three QoS metrics: latency, latency
variation, and jitter:

a) Latency: To capture network delay, we measure the
difference between the time the packet was sent and the time a
response was received. This metric is also called ‘Round-Trip
Time latency’ (RTT latency).

b) Latency variation: It captures the absolute difference
between subsequent latency measurements.

c) Jitter: This metric is derived from network latency,
defined by the average deviation from network mean latency.

C. Results

The benchmark results were produced using a workload
consisting of a client and a server pod, sending requests in
intervals of 100 milliseconds. We ran the workloads without
the service mesh and with ambient mesh deployment mode.

Observing the latency plotted in Fig. 6, we can find
a significant improvement when enabling the zTunnel
optimization. The p75 latency in the optimized scenario is
slightly near or below the p25 latency in the baseline. This
represents a latency reduction of up to 21.35%. The values
summary is presented in Table I. This reduction indicates that,
even under higher load scenarios, three-quarters of all requests

Figure 7: Latency variation distribution plot.

Table II: Jitter values summary

Mode Scenario Jitter (µs)
No Service
Mesh

Baseline 83.25
Optimization 80.86

(-2.87%)
Ambient
Mesh

Baseline 88.44
Optimization 79.79

(-9.78%)

are now processed as quickly as the fastest one-quarter of
requests were handled before the optimization.

We also analyze jitter to assess the impact of our
optimization on latency stability. As observed in Fig. 7, latency
variation quartiles are consistently lower than the baseline,
and jitter decreased by as low as 9.78%, as in Table II.
This reduction in jitter underscores our solution’s ability to
enhance network performance predictability and reliability
without introducing instability.

The experimental outcomes presented in this section assert
the viability of eZtunnel to significantly enhance networking
performance in service meshes, reducing latency, jitter, and
maintaining system stability.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose eZtunnel, a transparent offloading
solution for shortening the communication path in cloud-native
environments running a service mesh deployment. Using eBPF
allows for substantially improving communication QoS and
application performance. The results of our experimental
evaluation in an Istio deployment show promising outcomes.
Using our offloading solution, we achieved a significant
21.35% latency improvement. Furthermore, eZtunnel reduced
jitter by up to 9.78%.

Future work seeks to expand the testing benchmark to
multi-node cluster configurations, monitor additional metrics,
and add more workloads, such as those from 5G core and
user plane functions [17]. Additionally, we will demonstrate
the support for other service meshes and assess the security
implications of bypassing the kernel network stack in complex
environments.



SUPPLEMENTARY MATERIAL

Code repository and benchmark results of this research are
available at: github.com/smartness2030/eztunnel

ACKNOWLEDGMENT

This work was supported by Ericsson Telecomunicações
LTDA, and by the São Paulo Research Foundation (FAPESP)

, grant 2021/00199-8, CPE SMARTNESS .
This study was partially funded by CAPES, Brazil - Finance
Code 001.

REFERENCES

[1] D. Gannon, R. Barga, and N. Sundaresan, “Cloud-native
applications,” IEEE Cloud Computing, vol. 4, no. 5,
pp. 16–21, 2017. DOI: 10.1109/MCC.2017.4250939.

[2] R. Vaño, I. Lacalle, P. Sowiński, R. S-Julián, and
C. E. Palau, “Cloud-native workload orchestration at
the edge: A deployment review and future directions,”
Sensors, vol. 23, no. 4, 2023, ISSN: 1424-8220. DOI:
10.3390/s23042215.

[3] “Kubernetes,” Kubernetes. (), [Online]. Available: https:
//kubernetes.io.

[4] “Istio,” Istio Authors. (), [Online]. Available: https : / /
istio.io/.

[5] X. Zhu, G. She, B. Xue, Y. Zhang, Y. Zhang, X. K.
Zou, X. Duan, P. He, A. Krishnamurthy, M. Lentz,
D. Zhuo, and R. Mahajan, “Dissecting overheads of
service mesh sidecars,” in Proceedings of the 2023 ACM
Symposium on Cloud Computing, ser. SoCC ’23, Santa
Cruz, CA, USA: Association for Computing Machinery,
2023, pp. 142–157. DOI: 10.1145/3620678.3624652.

[6] W. Yang, P. Chen, G. Yu, H. Zhang, and H. Zhang,
“Network shortcut in data plane of service mesh with
ebpf,” Journal of Network and Computer Applications,
vol. 222, Feb. 2024, ISSN: 1084-8045. DOI: 10.1016/j.
jnca.2023.103805.

[7] J. Howard, E. J. Jackson, Y. Kohavi, I. Levine, J.
Pettit, and L. Sun. “Introducing ambient mesh: A
new dataplane mode for istio without sidecars,” Istio
Authors. (Sep. 2022), [Online]. Available: https://istio.
io/latest/blog/2022/introducing-ambient-mesh/.

[8] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N.
Katarki, A. Bruno, J. Hu, B. Ritchken, B. Jackson,
K. Hu, M. Pancholi, Y. He, B. Clancy, C. Colen, F. Wen,
C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa, R. Lin,
Z. Liu, J. Padilla, and C. Delimitrou, “An open-source
benchmark suite for microservices and their hardware-
software implications for cloud & edge systems,”
in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’19,
Providence, RI, USA: Association for Computing
Machinery, 2019, pp. 3–18, ISBN: 9781450362405.
DOI: 10.1145/3297858.3304013.

[9] “Microservices-demo: Sample cloud-first application
with 10 microservices showcasing kubernetes, istio, and
grpc,” Google. (), [Online]. Available: https : / /github.
com/GoogleCloudPlatform/microservices-demo.

[10] W. Li, Y. Lemieux, J. Gao, Z. Zhao, and Y. Han,
“Service mesh: Challenges, state of the art, and future
research opportunities,” in 2019 IEEE International
Conference on Service-Oriented System Engineering
(SOSE), 2019, pp. 122–1225. DOI: 10.1109/SOSE.2019.
00026.

[11] M. A. M. Vieira, M. S. Castanho, R. D. G. Pacı́fico,
E. R. S. Santos, E. P. M. C. Júnior, and L. F. M. Vieira,
“Fast Packet Processing with eBPF and XDP: Concepts,
Code, Challenges, and Applications,” ACM Comput.
Surv., vol. 53, no. 1, Feb. 2020, ISSN: 0360-0300. DOI:
10.1145/3371038.

[12] S. Qi, H.-S. Tsai, Y.-S. Liu, K. K. Ramakrishnan,
and J.-C. Chen, “X-io: A high-performance unified i/o
interface using lock-free shared memory processing,”
in 2023 IEEE 9th International Conference on Network
Softwarization (NetSoft), 2023, pp. 107–115. DOI: 10.
1109/NetSoft57336.2023.10175428.

[13] S. Qi, L. Monis, Z. Zeng, I.-c. Wang, and K. K. Ramakr-
ishnan, “Spright: Extracting the server from serverless
computing! high-performance ebpf-based event-driven,
shared-memory processing,” in Proceedings of the ACM
SIGCOMM 2022 Conference, ser. SIGCOMM ’22,
Amsterdam, Netherlands: Association for Computing
Machinery, 2022, pp. 780–794, ISBN: 9781450394208.
DOI: 10.1145/3544216.3544259. [Online]. Available:
https://doi.org/10.1145/3544216.3544259.

[14] T. Graf. “Cilium service mesh – everything you need to
know,” Isovalent. (Jul. 2022), [Online]. Available: https:
//isovalent.com/blog/post/cilium-service-mesh/.

[15] eBPF-Docs, eBPF-Docs Authors. [Online]. Available:
https://ebpf-docs.dylanreimerink.nl/linux.

[16] Aya – eBPF library for the Rust programming language,
The Aya Contributors. [Online]. Available: https://aya-
rs.dev/.

[17] T. A. Navarro do Amaral, R. V. Rosa, D. F. C.
Moura, and C. Esteve Rothenberg, “Run-time adaptive
in-kernel bpf/xdp solution for 5g upf,” Electronics,
vol. 11, no. 7, 2022, ISSN: 2079-9292. DOI: 10.3390/
electronics11071022. [Online]. Available: https://www.
mdpi.com/2079-9292/11/7/1022.


