
Innovative Approaches for Network
Analysis and Optimization: Leveraging

Deep Learning and Programmable
Hardware

1st Ariel Góes de Castro
Universidade Estadual de Campinas (UNICAMP)

Campinas - SP, Brazil
https://orcid.org/0000-0002-5391-5082

2nd Christian Esteve Rothenberg
Universidade Estadual de Campinas (UNICAMP)

Campinas - SP, Brazil
https://orcid.org/0000-0003-3109-4305

Abstract—Network demand for real-time applica-
tions like self-driving cars and cloud gaming strains
existing networks. Latency and congestion hurt user
experience. Realistic testing is vital to improving net-
works, but real-world data is scarce. In this context,
we propose to analyze existing network data and
identify traffic patterns and anomalies. We believe this
knowledge can be used to feed generative adversarial
network (GAN) models, which can create realistic
synthetic data, supplementing existing real traces
while protecting end-user privacy. This augmented
data can then be used, for instance, to empower
improved routing algorithms designed to benefit from
programmable hardware (e.g., SmartNICs) and col-
lected data plane metrics, paving the way for improved
network performance and enhanced user experience
with more autonomous decisions. This paper presents
our initial analysis of synthetic network data gen-
eration technologies and summarizes the main ideas
guiding my Ph. D. research.

Index Terms—programmable hardware, neural net-
works, and network trace generation.

I. INTRODUCTION

The surge in network demand fueled by real-
time, data-intensive applications like healthcare, au-
tonomous vehicles, and cloud gaming has intensi-
fied the need for enhanced network performance.
However, production networks often suffer from
issues like latency and congestion, impacting user
experience and service quality. Also, obtaining real
network data for these tasks is often challenging
for several reasons. First, network data may contain
sensitive or private information of the users or
organizations, which raises ethical and legal issues
for sharing or publishing them. Second, network

This work was partially supported by the Innovation Cen-
ter, Ericsson S.A., and by the Sao Paulo Research Founda-
tion (FAPESP), grant 2021/00199-8, CPE SMARTNESS.

Discriminator

Generated

samples

Real

samples

Generator

Real?

Fake?

Loss

Loss

Predictions

Error adjustment

Error adjustment

Fig. 1. GAN architecture overview.

data may be scarce or outdated [1], especially for
emerging or evolving network scenarios (e.g., 5G,
IoT, SDN). Third, network data may be biased or
incomplete [2], [3], which limits the generalization
and robustness of the network analysis models.

To effectively develop new algorithms and solu-
tions that cater to the diverse requirements of such
applications under realistic conditions, it is impera-
tive to test them in environments that closely resem-
ble real-world scenarios. It necessitates using real
devices and incorporating communication logs. To
overcome the challenges mentioned above, network
data generation techniques have been proposed to
create synthetic or realistic network data that can be
used for network analysis tasks. These techniques
mimic the characteristics and behaviors of real net-
work data, such as packet headers, payloads, flows,
protocols, and traffic patterns (e.g., video streaming,
VoIP). Network data generation techniques can also
introduce variations and anomalies to the network
data to simulate different network conditions and
scenarios.

Network data generation techniques can be clas-
sified into two main categories: model-based and

https://orcid.org/0000-0002-5391-5082
https://orcid.org/0000-0003-3109-4305


trace-based. Model-based [4], [5] techniques use
mathematical models or statistical methods to gen-
erate network data from scratch. Model-based tech-
niques can capture real network data’s general
properties and distributions, such as packet inter-
arrival times, packet sizes, flow duration, and flow
rate. Model-based techniques can also incorporate
different network parameters and configurations,
such as the number of hosts, connections, traffic
types, and traffic volumes. However, model-based
techniques may not be able to reproduce the specific
features and dynamics of real network data, such
as protocol-specific fields, application-specific con-
tents, and temporal or spatial correlations. On the
other hand, trace-based techniques [6] use existing
network traces or PCAPs as inputs to generate
new network data. It can preserve the realistic
and detailed aspects of real network data, such
as packet headers, payloads, flows, protocols, and
traffic patterns. With this new paradigm, we can
modify or manipulate the existing network traces
or PCAPs to create new network data with differ-
ent characteristics or behaviors while anonymizing
sensitive or private information (e.g., end-user IPs)
in the network traces.

A promising trace-based approach lies in harness-
ing the recent strides made in Generative Adver-
sarial Networks (GANs). Just as GANs [7] have
revolutionized the generation of high-quality im-
ages, they hold the potential to reshape the land-
scape of PCAP (packet capture) generation. Fig-
ure 1 summarizes a GAN architecture overview.
It encompasses two distinct Neural Networks —
an entity designated as the generator and another
as the discriminator — that engage in an interplay
following the principles of game theory, as delin-
eated in [8]. The fundamental operational paradigm
involves the generator network producing synthetic
data samples to deceive the discriminator. In paral-
lel, the discriminator network undertakes the role
of a judge, assessing the similarity between real
and generated/synthetic data. The main objective
is to create a scenario wherein the discriminator’s
capacity to discern actual data from its synthetic
counterparts is markedly diminished.

When employed as a synthetic data generator,
GANs work as a simulator. Within this context,
the synthetic data produced emulates the inherent
distribution of the original dataset [9], thereby en-
suring the preservation of privacy considerations.
Moreover, these networks prove instrumental in
tasks such as dataset augmentation and balancing,
culminating in a dataset characterized by enhanced

representational capacity. Consequently, the resul-
tant model emerges as a conduit to share intricate
dynamics of real environments while obfuscating
inherent complexities and maintaining data quality
integrity.

The rest of the paper is organized as follows.
Section II summarizes the state of the art on syn-
thetic traffic generation. Section III presents the
methodology we hope to use to answer the main
questions identified. Finally, Section IV concludes
the article, recapitulating the topics covered and
illustrating the future steps of our research.

II. STATE OF THE ART

Recently, realistic traffic generation relied primar-
ily on neural network architectures such as Gener-
ative Adversarial Networks (GANs) [6], [9], [10]
or diffusion models [11]. For instance, the GAN
architecture works as follows: a generator produces
synthetic data that mimics the real data distribution,
while the discriminator tries to distinguish between
real and synthetic data. Both are trained adver-
sarially until they reach an equilibrium where the
discriminator cannot differentiate (i.e., discriminate)
between real and synthetic data. Similarly, diffusion
models have a controlled and gradual training pro-
cess but are more computationally expensive.

PcapGAN [6] proposes a method for generating
realistic PCAP files that preserve the style and
structure of real PCAP files. The technique uses a
style-based GAN architecture that can control the
style of the generated packets at different levels of
abstraction. SIP-GAN [10] introduces a method for
generating realistic SIP (Session Initiation Protocol)
traffic that can be used for testing VoIP (Voice over
IP) systems. The technique uses a conditional GAN
(cGAN) architecture that can generate SIP messages
with different types, such as INVITE, ACK, BYE,
CANCEL, and OPTIONS. NetDiffusion [11] lever-
ages a fixed-length packet representation [12] to
transform packets into images that can be easily ma-
nipulated. Despite that, its protocol rule-compliance
approach is post-generative, which means the gen-
erated packet is not protocol-compliant and must be
modified to reflect the desired output.

While the mentioned work has demonstrated the
efficacy of neural networks in network analysis
tasks, it is important to note they have primarily
been executed on generic-purpose CPUs. How-
ever, the landscape of network hardware is rapidly
evolving, presenting new opportunities to leverage
specialized hardware for enhanced performance and
efficiency. One such promising avenue is the in-
tegration of neural networks with programmable



network hardware, such as SmartNICs, to tackle a
diverse range of network challenges.

By offloading neural network processing tasks,
significant performance improvements can be
achieved [13], leading to faster decision-making
and reduced latency. It is particularly advantageous
for real-time applications such as intrusion and
anomaly detection, where timely responses are crit-
ical. Furthermore, programmable data plane hard-
ware provides access to low-level network data
with minimal overhead, enabling neural networks
to operate directly on raw packet streams with local
decisions. For instance, FcNN [14] is a distribu-
tive data-centric computing framework for reconfig-
urable SmartNIC-based systems. It allows the com-
plete detaching of NN kernel execution control logic
system scheduling and network communication to
the SmartNICs. It boosts performance by avoiding
control dependency with CPUs for various neural
network kernels and applications, including DNNs
and GNNs.

III. OBJECTIVES, RESEARCH QUESTIONS AND
METHODOLOGY

The proposed research aims to address gaps in
the state-of-the-art by exploring the feasibility of
generating realistic network traces with different
generative approaches.

A. Research Questions

The proposed research plan deals with the fol-
lowing research questions.

1) How can we handle specific challenges like
sequence generation [6] and temporal de-
pendencies [11], in the context of network
trace generation? Can those restrictions be
embedded into the model, or must they be
treated in a post-generation manner?

2) Is it possible to create a transparent traffic
generation tool for the end user?

3) Should we offload network applications (e.g.,
routing) with the aid of neural network
models into programmable network hardware
(e.g., FPGAs, SmartNICs)? If so, what are the
best offloading strategies (i.e., hybrid or total
offloading) for each application?

4) What potential challenges will it present (e.g.,
energy consumption, memory limitation) for
different hardware architectures (e.g., Smart-
NICs, FPGAs)?

B. Work Plan

This section provides an overview of the work
plan stages that will direct the research activities for

this Ph.D. The results will be published accordingly
in all of these phases. To attain the objectives
mentioned earlier and research questions, we will
use the following methodology.

Addressing Challenges in Network Trace Gener-
ation: The first step towards an intelligent system
that generates realistic packet traces is to (i) gather
a diverse set of real-world network traces (PCAP
files) representing various communication scenar-
ios and protocols and (ii) preprocess the collected
dataset to extract relevant features and normalize
data to ensure consistency across different traces.
To do that, we intend to leverage nPrint [12] packet
representation. It provides a standardized bit-level
representation of every network packet, ensuring
all potential header fields (even if not present in
the original packet). For instance, while a TCP
packet will not have UDP header bits, the nPrint
still includes placeholders for these bits, ensuring a
uniform input structure for ML models. Regarding
the datasets, Kaggle is a promising online data sci-
ence platform that could serve as a starting point for
gathering freely available PCAPs. On this website,
we found a promising dataset with around 7GB of
network traces split in heterogeneous applications
such as Skype and Amazon. Another option would
be to explore code platforms such as GitHub and
GitLab or other platforms such as Paperswithcode,
which groups papers and their respective codes –
i.e. if they are open source. However, it is yet to be
known whether the available data may be biased,
with a lot of repeated information that does not help
the neural model to learn different traffic scenarios.
For example, if we consider a dataset about bank
fraud and consider two classes (true, false) where
most of the labels are ”false”, then the trained model
may become biased, learning/specializing more in
certain characteristics that do not facilitate the iden-
tification of true positives for fraud. The same idea
applies for the computer network context. An ideal
dataset distribution should be able to represent the
entire – i.e., at least most of – data distribution over
time.

An end-user traffic generator tool: Besides having
data from each application, it is necessary to create
a neural network that understands the demands of
each application to generate network traffic that
captures the nuances of each request. Initially, the
most promising architecture tested to create images
more faithful to the originals is Variational Au-
toencoders (VAEs) [15]. However, there are some
limitations. First, we must train the model offline
and re-execute the PCAPs in the infrastructure.



Second, the user has little control over the type
of application to be generated or what types of
traffic the network can generate. To achieve this, we
could integrate the idea of creating or modifying an
existing large language model (LLM) [16] capable
of understanding high-level user requests in the
network context and generating network traffic with
desired characteristics. For example, ideally, we
should be able to generate traffic as follows (or sim-
ilarly) “Netflix traffic, 1GBps, latency 50ms, jitter
5ms”. In the previous example, the user would not
(ideally) need to worry about how their data is being
generated, where the solution’s internal processes
would be transparent to them. However, the user
could be guaranteed that the data distribution he
requested would be generated, in the same way as
the traffic restrictions (e.g. jitter, latency).
Offloading Network Applications to
Programmable Hardware: At this point, we
will conduct a comprehensive review of available
programmable network hardware options, including
SmartNICs and FPGAs that can be leveraged,
considering their specifications, capabilities, and
programmability features to determine suitability
for offloading network applications. Then, we will
identify the most prominent network applications
suitable for offloading (i.e., partially or even
totally) and adapt the selected applications for
execution on programmable hardware, optimizing
for performance and resource utilization.
Analysis of Hardware Limitations and Trade-
offs: Considering the acquisition of the necessary
hardware, profiling tests will be carried out on
the available platforms and Measure key perfor-
mance metrics such as processing speed, memory
bandwidth, and energy consumption under varying
workloads for partially/totally offloaded applica-
tions, considering factors like data transfer rate and
protocol overhead, determining the feasibility and
practical implications of offloading network appli-
cations to programmable hardware in real-world
deployment scenarios.

IV. CONCLUSION

This article presents the main research directions
for my first-year Ph.D. In this context, the idea of
traffic generation can still be widely explored for
different protocols and applications, facilitating the
generation of traffic for the end user transparently.
Furthermore, there is the possibility of offloading
different applications onto programmable hardware.
We believe we could benefit from this equipment
and accelerate the traffic generation process.

REFERENCES

[1] H. N. Qureshi, U. Masood, M. Manalastas, S. M. A. Zaidi,
H. Farooq, J. Forgeat, M. Bouton, S. Bothe, P. Karls-
son, A. Rizwan, et al., “Towards addressing training data
scarcity challenge in emerging radio access networks: A
survey and framework,” IEEE Communications Surveys &
Tutorials, 2023.

[2] T. Bühler, R. Schmid, S. Lutz, and L. Vanbever, “Gen-
erating representative, live network traffic out of millions
of code repositories,” in Proceedings of the 21st ACM
Workshop on Hot Topics in Networks, pp. 1–7, 2022.

[3] E. Dai and S. Wang, “Say no to the discrimination:
Learning fair graph neural networks with limited sensitive
attribute information,” in Proceedings of the 14th ACM
International Conference on Web Search and Data Mining,
pp. 680–688, 2021.

[4] G. Carneiro, “Ns-3: Network simulator 3,” in UTM lab
meeting April, vol. 20, pp. 4–5, 2010.

[5] Y. Yin, Z. Lin, M. Jin, G. Fanti, and V. Sekar, “Practi-
cal gan-based synthetic ip header trace generation using
netshare,” in Proceedings of the ACM SIGCOMM 2022
Conference, pp. 458–472, 2022.

[6] B. Dowoo, Y. Jung, and C. Choi, “Pcapgan: Packet capture
file generator by style-based generative adversarial net-
works,” in 2019 18th IEEE International Conference On
Machine Learning And Applications (ICMLA), pp. 1149–
1154, IEEE, 2019.

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
“Generative adversarial networks,” Communications of the
ACM, vol. 63, no. 11, pp. 139–144, 2020.

[8] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
“Generative adversarial nets,” Advances in neural infor-
mation processing systems, vol. 27, 2014.

[9] Y. Yin, Z. Lin, M. Jin, G. Fanti, and V. Sekar, “Prac-
tical gan-based synthetic ip header trace generation us-
ing netshare,” in Proceedings of the ACM SIGCOMM
2022 Conference, SIGCOMM ’22, (New York, NY, USA),
p. 458–472, Association for Computing Machinery, 2022.

[10] A. Meddahi, H. Drira, and A. Meddahi, “Sip-gan: Gen-
erative adversarial networks for sip traffic generation,” in
2021 International Symposium on Networks, Computers
and Communications (ISNCC), pp. 1–6, IEEE, 2021.

[11] X. Jiang, S. Liu, A. Gember-Jacobson, A. N. Bhagoji,
P. Schmitt, F. Bronzino, and N. Feamster, “Netdiffusion:
Network data augmentation through protocol-constrained
traffic generation,” arXiv preprint arXiv:2310.08543, 2023.

[12] J. Holland, P. Schmitt, N. Feamster, and P. Mittal, “New
directions in automated traffic analysis,” CCS ’21, (New
York, NY, USA), p. 3366–3383, Association for Comput-
ing Machinery, 2021.

[13] C. Campolo, A. Iera, and A. Molinaro, “Network for
distributed intelligence: a survey and future perspectives,”
IEEE Access, 2023.

[14] A. Guo, T. Geng, Y. Zhang, P. Haghi, C. Wu, C. Tan,
Y. Lin, A. Li, and M. Herbordt, “Fcsn: A fpga-
centric smartnic framework for neural networks,” in 2022
IEEE 30th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM),
pp. 1–2, IEEE, 2022.

[15] C. Doersch, “Tutorial on variational autoencoders,” arXiv
preprint arXiv:1606.05908, 2016.

[16] Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu,
H. Chen, X. Yi, C. Wang, Y. Wang, et al., “A survey on
evaluation of large language models,” ACM Transactions
on Intelligent Systems and Technology, vol. 15, no. 3,
pp. 1–45, 2024.


	Introduction
	State of the art
	Objectives, Research Questions and Methodology
	Research Questions
	Work Plan

	Conclusion
	References

