
Demonstrating the Advantages of Computational
Offloading of XR Services via WebAssembly

Gabriel Espindola∗, Matheus Pires∗, Gustavo Spadotto†,
Cristiano Both†, Bruno Silvestre∗, Kleber Cardoso∗, Andrew Williams‡, Fabio Verdi∥, Sand Correa∗

∗Universidade Federal de Goiás (UFG), Brazil, †Sinos River Valley University (UNISINOS), Brazil
‡Ericsson Research, Stockholm, Sweden, ∥ Universidade Federal de São Carlos (UFSCar), Brazil

{gabriel.nery, matheuspires23}@discente.ufg.br∗, {sandluz, kleber, brunoos}@ufg.br∗,
{gustavo, cbboth}@unisinos.br†, andrew.williams@ericsson.com‡, verdi@ufscar.br∥

Abstract—Extended reality (XR) services form the basis of
various innovative applications. These new applications are
expected to run on mobile devices with limited computational
and energy capabilities. At the same time, XR services should
fulfill some expectations regarding data rates and end-to-end
latency to guarantee an uninterrupted user experience. In this
context, offloading intensive computation to the edge is particu-
larly advantageous for mobile devices, enabling access to more
capable processing hardware. Current studies on computational
offloading focus mainly on the compute and network continuum
formed between edge and cloud and realized mostly through
containers. Conversely, this demonstration showcases a compu-
tational offloading framework that allows the expansion of XR
services functionality from the connected mobile device to an
edge computing environment. The presented framework is based
on a portable, lightweight, and secure WebAssembly runtime
and uses open technology implementations. We demonstrate
that the developed framework allows significant performance
improvements in a Yolo object detection application and reduces
heat generation on mobile devices.

I. INTRODUCTION

The next generation of immersive multimedia and connec-
tivity services is called extended reality (XR) and includes vir-
tual, augmented, and mixed-reality technologies [1]. XR ser-
vices include functionalities such as simultaneous localization
and mapping (SLAM), pose estimation, object detection, hand
tracking, and semantic segmentation, which have been used in
various innovative applications, from the industrial metaverse
to entertainment and healthcare. On the one hand, various
of these new applications are expected to run on mobile
user equipment (UE) such as smartphones, XR headsets, or
drones, which usually have limited computational capabilities
and energy capacity. On the other hand, to guarantee an
uninterrupted user experience, XR services should fulfill some
expectations regarding data rates and end-to-end latency [1]. A
promising way to overcome this problem is to offload the XR
services of a running application from the UE to the network
edge, where a server can increase the application’s quality of
experience by giving offloaded tasks remote access to, e.g.,
hardware accelerators such as GPUs.

Computational offloading has been approached in the com-
pute and network continuum formed between edge and cloud.
In such context, ETSI-MANO-aligned implementations and
Kubernetes distributions are employed to move application

functionality running in the cloud to edge [2]. However, such
platforms are inadequate when moving running XR services
from the UE to the edge. Virtual machines have a large
footprint and high overhead, while containers are generally
not portable across operating systems. To deal with the ex-
pectations regarding data rates and end-to-end latency of XR
services and the heterogeneity of UEs, the dynamic compu-
tational offloading framework should be platform-independent
(R1), lightweight (R2), and have a low footprint (R3). This
framework must also be secure (R4), providing tenant isola-
tion. Finally, it is also desirable to be language-independent
(R5) to allow developers more flexibility.

In [3], a distributed execution framework and a novel
programming model for computational offloading based on
WebAssembly (Wasm) runtimes was introduced. Wasm is
an instruction format designed to be executed on load-time
efficient, memory-safe, and sandboxed stack-based virtual
machines [4]. The work proved the solution’s viability for
building an offloading framework that satisfies requirements
R1-R5, showing performance and power consumption im-
provements through computational offloading in resource-
constrained devices. However, the toolchain used in [3] is
optimized for Swift applications and relies on proprietary
system interfaces to work efficiently. In addition, this toolchain
has proven challenging to develop and extend.

This demonstration seeks to fill this gap by showcasing
a feature equivalent offloading framework developed in [3]
but using open technologies more suited to WebAssembly
implementations, such as Rust and C++. We then evaluate
the implemented framework’s effectiveness in dealing with
XR requirements, showing the application’s performance with
regard to throughput, CPU usage, and CPU temperature.
Through this demonstration, we contribute to the design of
offloading frameworks for scenarios requiring portable and
secure runtimes. Since Wasm is still an immature technology
compared to more conventional portable bytecode formats
such as Java or to more heavyweight distributed platforms
such as containers or virtual machines, demonstrations like
the one presented in this paper are crucial to making sure
that future Wasm-related standards meet the requirements of
advanced XR use-cases.



UE Offloading Cluster

Notifier

Offload
Handler

Offload
Manager

Resource
Manager

Offload
Handler

Host
XR App
Native 
Module

Execution Handler
Wasm 

Runtime
Wasm 
Module

Host 
Functions

Guest
Functions

XR App

Fig. 1. The dynamic computational offloading architecture. Boxes and arrows in blue represent control panel elements; boxes and arrows in green represent
execution plane elements, while arrow in red represents the data plane.

II. SYSTEM ARCHITECTURE

We devise a framework architecture where offloading is
handled at the granularity of a module. The later is a part of the
application that can be offloaded, including single functions,
tasks, or the whole application. Figure 1 depicts the overall
architecture, which comprises three planes.

The control plane consists of functionalities to manage
offload requests and allocate edge resources. It is divided into
two parts: the UE side and the edge offloading cluster side.
On the UE side, the control plane comprises (i) a Notifier,
which gathers device metrics, and (ii) a (UE) Offload Handler,
responsible for handling the interaction with the application,
discovering the closest offloading cluster, and requesting the
offload of a specified module with its corresponding part on
an allocated host within the offloading cluster. On the offload-
ing cluster side, the control plane comprises (i) an Offload
Manager that coordinates activities such as authentication,
authorization, and resource management for each offloading
request coming from the UE side; (ii) a Resource Manager,
responsible for selecting a host to run the module; and (iii)
a (Host) Offload Handler, responsible for synchronizing an
offloading event with its counterpart in the UE.

The execution plane consists of the functionalities to load
and execute a specified module. It comprises (i) the running
application on the UE and (ii) the Execution Handler running
on the selected host within the offloading cluster. The Execu-
tion Handler acts as the remote application, and it is responsi-
ble for running the offloaded module. Since the execution of
offloaded modules is based on Wasm, the Execution Handler
embeds a WebAssembly runtime to load Wasm modules and
call exported functions, known as guest functions. The Wasm
modules (and the guest functions) can be obtained from a
repository within the edge offloading cluster. Following the
WebAssembly programming model, the Wasm module can
access host machine functionality through the standardized
WASI system interface1 or non-standard host function calls
to host resources (e.g., networking, GPU). The Execution
Handler interacts with the (Host) Offload Handler, allowing
for the invocation of Wasm modules and the calling of exposed

1https://github.com/WebAssembly/WASI/

Wasm functions. Once instantiated, the offloaded module
communicates directly with the UE application through the
data plane rather than the service framework.

To guide the developer in the task of dividing the applica-
tion functionality, the framework provides a communication
method known as elastic channel, where endpoints can trans-
parently change location during their lifetime. This allows one
endpoint to remain fixed in the UE while the other endpoint
can freely move around, e.g., to the closest offloading cluster.
Elastic channels are included in the application as a library,
allowing endpoints to be explicitly declared by the developer.
Complementing the elastic channel programming model, a
form of Remote Procedure Call, known as elastic functions,
allows a function call to look the same both when a module
containing the function implementation is residing locally in
the UE or when it is at a remote location. To do that, an extra
pre-processing step in the compiler permits the developer to
tag functions as offloadable. When compiled, two versions of
an offloadable function are built, one that can run natively on
the device and another compiled to WebAssembly that can
readily run remotely, independent of the platform choices at
the offloading cluster.

III. DEMO SETUP AND RESULTS

Since our objective is to investigate the viability of using
open technologies to build an offloading framework based on
the WebAssembly programming model, we limit the scope
of the demonstration to the execution plane. Figure 2 de-
scribes the proof-of-concept (PoC) deployment. We use two
machines with different computing capabilities. The first is
a desktop comprising an i7-3770 3.9 GHz processor with
8GB RAM. Since we are not focused on the control and
data plane signaling in this demonstration, the desktop is used
as the less capable processing machine, taking the place of
the UE. The second machine represents the edge host and
comprises an Intel Xeon Gold 5418Y 3.800 GHz processor,
128GB RAM, and an NVIDIA RTX A5000 GPU. The two
machines are connected by a LAN. The XR application uses
the YoloV8 neural network for object detection based on
OpenCV 4.10. The application reads a video stream, decoding
frame by frame (codification function). Each frame is then



UE

video

XR App

draw_boxes display

Edge Host
Execution Handler

codification

detect_object
Yolo:detect_object

Wasmtime

detect_object

1

2

2
2.1

43

Native Module Wasm Technology Host Function Elastic Channel

1

Fig. 2. PoC implementation and deploy.

converted to an image and processed by the YOLO model,
which detects bounding boxes, object classes, and confidence
scores (detect_object function). Bounding boxes and object
labels are drawn on the frame (draw_boxes function), and
the enriched frame is displayed to the user (display function).
The detect_object function is tagged as offloadable; thus, it is
compiled to native and Wasm code. The application and the
Execution Handler are developed in Rust, while OpenCV is
implemented in C++ and compiled to enable GPU execution.
We use the Wasmtime 26.0.1 WebAssembly runtime and
elastic channels use the TCP protocol.

Fig. 3. FPS, CPU, temperature, and data network measurements.

To make evaluating the impact of offloading simple, we
design the application to switch between offload and non-
offload mode at each 50 frames. Initially, all the application
components run natively on the UE. After the first 50 frames
are processed, the application offloads the object detection

functionality to the edge host. The edge host processes the next
50 frames when the application switches back the execution
of the detection functionality to the UE. This process is
repeated until the end of the video. Figure 3 shows FPS, UE
CPU usage, UE CPU temperature, and network data results.
We can observe that when detect_object is running locally
(frames 0-50, 100-150, 200-250, 300-350, 400-450, and 500-
550), the frame rate is around 7 FPS, UE CPU utilization
is approximately 60%, UE CPU temperature grows up to
57.5◦ celsius and no data is transmitted in the network. When
detect_object is offloaded to the edge host, the frame rate
grows to 20 FPS due to the use of GPU, UE CPU usage and
temperature decreases, and network data reaches more than 1.2
Mb. These results show that by using open technologies, we
can implement an easy to use/extend WebAssembly execution
environment while increasing the application’s performance
and reducing energy heat on the UE.

IV. CONCLUSIONS

This demonstration contributed to the research and devel-
opment efforts to realize a lightweight, platform-independent,
language-agnostic, and easy-to-use computational offloading
framework. These efforts will pave the way toward ensuring
that future Wasm-related standards meet the requirements of
advanced use cases.

ACKNOWLEDGMENT

This work was supported by Ericsson Telecomunicações
Ltda., and by the São Paulo Research Foundation
(FAPESP), grant 2021/00199-8, CPE SMART-
NESS .

REFERENCES

[1] A. Amiri et al., “Application Awareness for Extended Reality Services:
5G-Advanced and Beyond,” IEEE Communications Magazine, vol. 62,
no. 8, pp. 38–44, 2024.

[2] T. Taleb et al., “Toward Supporting XR Services: Architecture and
Enablers,” IEEE Internet of Things Journal, vol. 10, no. 4, pp. 3567–
3586, 2023.

[3] V. Yadhav, A. Williams, O. Smid, J. Kjällman, R. Islam, J. Halén, and
W. John, “Dynamic Computational Offloading for Mobile Devices,” in
Proceedings of the 14th International Conference on Cloud Computing
and Services Science - CLOSER, ser. CLOSER’24. SciTePress, 2024,
pp. 265—-276.

[4] A. Haas et al., “Bringing the web up to speed with WebAssembly,”
SIGPLAN Not., vol. 52, no. 6, p. 185–200, 2017.


