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e Associate Professor (tenure track) at FEEC/UNICAMP (since 2013)

o Leading the INTRIG lab at DCA/FEEC/UNICAMP "/} g [
\ Unicamp

INTRIG: Information & Networking Technologies Research & Innovation Group
o Currently, supervising 7 PhD, 7 MSc candidates, and 4 undergrad students

&
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e PhD in Electrical and Computer Engineering (FEEC/UNICAMP, 2010)
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o Technical Lead of SDN activities in the Converged Networking Division

e Currently. Pl / Director of the SMARTNESS Engineering Research Center (ERC)
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What is SMARTNESS 20307 ﬁﬁ:@
CPE: FAPESP Engineering Research Center (ERC) SMARTNESS

» Co-Financed by the Sao Paulo Research Foundation (FAPESP).

 FAPESP is a solid and stable foundation, with budget of 1% of all state taxes collection
(3.5 Billion SEK in 2021).

 ERC is FAPESP's top program for collaborative research with Industries.

 ERC premise: the execution of internationally competitive research in accordance with
global excellence benchmarks.

* There are currently more than 15 ERC in different technological areas, e.g., oil and gas,
biotechnology, agribusiness, energy, artificial intelligence, etc.

e SMARTNESS is the first ERC in the Telecom area

A FAPESP

https://fapesp.br/cpe
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SMARTNESS 2030 Q(_\@

A networking-centric Engineering Research Center SMARTNESS

Mission Founders Long-term investment History/ Status
Cutting-edge research Ericsson, UNICAMP, 10 years. 2018-20 — Work on the Proposal
in communication USP and UFSCar. Feb/ 2021 — Prop. submission
networks and advanced 56 MBRL (~120 MSEK)

. May / 2022 — FAPESP |
digital application Hub center at UNICAMP  1:1:2 — Ericsson: FAPESP: ay [ 2022 ~ FAPESP approva

J

PO s
wwww

Towards 6G. 50+ associated researchers April 2023 - Official start Ao
@ 15+ university partners ?

120+ scholarships

l




Advancements QGQ

STAs SMARTNESS

CEC: Customized Edge Computing

Augmented | Industrial

CA: Cognitive Architectures Society [l Internet
& Machine Intelligence Future Applications
; SMARTNESS 2030
s FCD: Fluid Control & Data planes Scientific & Technology Advancements
TRU: Trustworthiness E i éi *3 8 @
(CEC) (CA) (FCD)
Customized Edge Cognitive Fluid Control &
_ - \. Computing / \ Architectures / | DataPlanes )
SUS: Sustainability S
A (TRU) (SUS) &
| °N+¢°  Trustworthiness Sustainability @



https://smartness2030.tech/scientific-and-technological-advancements/

PUSH/PULL modes of operation @‘@ Q(_\@

“Technology Push & Market Pull” like workflows

SMARTNESS

Academic Research Push: New research findings, ideas, trends, etc. from SMARTNESS pushed to Ericsson Research

Ericsson Research Pull: New research contribution demands/opportunities from projects / standards brought to
SMARTNESS 2030 to shape ongoing Research Strands and/or create new ones.
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PULL

Executive Committee
(EC)

—

o
ERICSSON
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SMARTNESS

Scientific & Technology
Advancements Board
(STAB)

Technology Journeys
Future Network Programs
EU SNS JU Projects
Standardization

Open Source

Etc.

International Advisory Board
(IAB)

FCD (CA |[TRU ([SUS
Beyond State-of-the-Art




Sobre SMARTNESS (2023-2033)

Industry

SMARTNESS 2030

CPE: FAPESP Engineering Research Center (ERC)

Academia

. Scientific & Technology Advancements

Open
Research
(SW/Data)

Technology Transfer & Education and Knowledge Dissemination

Training &
Education

b

Talent Building
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Where are we heading to?
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Content Delivery Network (CDN) @Q
SMARTNESS

Origin Server Edge Server

Servic’ ¢ Level
Agreer nent

<
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Many layers! CJGQ

SMARTNESS

Bandwidth

f——

Latency

Cloud

Thousands of Data Centers

Fog

Millions of Nodes

Edge

Billions of Devices
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Wide Area Networks (WAN)

ata

SMARTNESS

| Metro and
Regional Networks
Access
Network

Access
Network
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5G/LTE Wireless FTTH/PON FTTH/PON 5G/LTE Wireless




Submarine Cables

SMARTNESS

Submarine Cables
1989-2023

READY FOR SERVICE

2023

NUMBER OF
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Cloud-Network Slicing
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Software-Defined Networking (SDN) Cﬁ:ﬁ
SMARTNESS

Traditional Network

API I SDN Controller

Data Data Data
Plane Plane Plane
Network Network Network

Control & Data
Plane Interface

(ex: OpenFlow)

Forwarding Layer
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Software-Defined Knowledge Plane ﬁﬁ_\lo
SMARTNESS

KNOWLEDGE

MANAGEMENT

CONTROL

DATA

Source: Fig. 1. KDN planes Fig. 2. KDN operational loop
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https://arxiv.org/pdf/1606.06222.pdf
http://knowledgedefinednetworking.org/

AI4ANETS, Big Data Analytics, and Network Monitoring

‘ Ever-increasing performance * Our reliance on the Internet makes us victims of its
success, and vulnerable to its shortcomings
g

THE INTERNET MAPPING PR JEC'I'

Please draw 3 map of the internet, as you s :
NETFLIX You[[[) Spetify

et , Indicate your“home
media streaming

requirements

-

-t ) A
AR

(m—o-:mn:onl

. Ever-increasing attack surface

e s En vae @ —
B L L At R

ey T % i - L iR
na

sy IRN

online social networks

The complexity of the Internet requires advanced monitoring and analysis approaches to
match the expectations in terms of security, robustness, performance, and adaptability

Source: Slide Courtesy by Pedro Casas: https:/ /bigdama.ait.ac.at/pcasas/

wd
SMARTNESS
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https://bigdama.ait.ac.at/pcasas/

AI4ANETS, Big Data Analytics, and Network Monitoring

THE INTERNET MAPPING PROJECT
N, A “The Internet is the first thing that humanity
has built that humanity doesn't understand,
the largest experiment in anarchy that we have
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Eric Schmidt, former Google CEO

* Hot Topic in the agenda of top Internet players

Goals of AIANETS

* A radical change in the way we manage communication networks, relying on Al & Big-Data
Analytics

* The vision —turn the Internet “transparent” and “liquid”

* More secure & robust, better performance, greener, and self-adaptive to end-user needs in
real-time

Source: Slide Courtesy by Pedro Casas: https://bigdama.ait.ac.at/pcasas/

—d
SMARTNESS
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Two decades of AIANETS

d

= Cognitive Networking (1998): networks with cognitive capabilities which could learn from past
observations and behaviors, to better adapt to end-to-end requirements.

SMARTNESS

* Term re-furbished along time, referring to it as self-organizing networks, self-aware networks,
self-driving networks, intelligent networks, etc.

* However, there is a striking gap between the extensive academic research and the actual
deployments of such Al-based systems in operational environments.

* Why? my take: there are still many unsolved 2020 2025
complex challenges associated to the analysis of S —
Networking data through Al/ML. e —
Automation Automation Automation | '"'14-1'-‘-"*'4-‘.‘.‘} I
. m ° )
* Hot Topic in the agenda of main Internet players: - F f—1 =
=L ] e —
" Network Operators EmE CER SEmL CEmEe
: - . ;L;ln;u;e r;-ra;t.-rh . mt.sqwh'.rt with Full . :::V:‘e{ur::::{:s . 13 ve 't;z‘s;:t‘mc
* Network Vendors (self-driving networks) ey o Mo | Semmite i
* Content Providers: the Internet business of " operatons v | Gtk ates " 0 S ot

maines carmol

end-user engagement
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All labels Some labels
(Supervised) (Semi-supervised)

Data collection

|
|
Feature
engineering

-=-=> Modellearning

Labels
(Unsupervised)

Feature

processing Outcome

|
|
N \/alidation 7 -f i ——
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ML/AI Fundamentals &
Application to Networking

ML 101

e Fundamentos de IA/ML



Historical Perspective QGO

Artificial Intelligence, Machine Learning are not new areas (and keep evolving) SMARTNESS

Interest

1956 1974 1980 1987 1993 2011 2777

year
. o Alan Lau
P. J. Denning and T. G. Lewis, “Intelligence May Not Be Computable,” American Scientist, vol. 107, no. 6, Nov. 2019 OEC’2020

S

aY 2 3
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What is Machine Learning? e
How to explain the recent boom on ML? SMARTNESS

Increasing computational power

Flood of available data — 20+ years of Internet worldwide
Increasing support from industries

Growing progress in algorithms & theory developed by researchers

Exponential = S °
Growth of Compu 2silion Catte s Ca11E IEX Cafte kI torch

The exponential growth of computing is a marvelous quantit 18
example of the exponentially growing returns from an evoll
process. We can express the exponential growth of comp 16 -
terms of its accelerating pace: it took 90 years to achieve ~‘>’ t h {}
MIPS per 1000 dollars; now we add 1.2 MIPS per 1000 d 14 Tensorggwgle e a n 0 -

- NTELL

coy g e MACHINE
LEARNING

Tablets

Smartphones @

18

D)=
LEARNING

Calculations per Second per $1,000

1950’s 1960’s 1970’s 1980’s 1990’s 2000’s 2010’s

P. J. Denning and T. G. Lewis, “Intelligence May
Not Be Computable,” American Scientist, vol. 107,
no. 6, Nov. 2019

Alan Lau
OFC’2020

UNICAMP



Why AlI/ML for networks?

(42

SMARTNESS

 What are the “killer” apps for AI/ML? Potentially the ones “where we are
already implicitly employing machine learning, maybe badly” (Schapira 2023)

|dentifying existing patterns or anomalies in data,
often in the present or recent past

Forecasting future outcomes or events based on
historical data

Source: Michael Schapira: Al for networking, and networking for Al. The Networking Channel, 2023. L. Gaspary 2§
Available at https:/ /www.voutube.com/watch?v=16DvbflUPSg IPSIN '2024



https://www.youtube.com/watch?v=i6DvbfIUPSg

Why AlI/ML for networks?

@
/ BN
=
o
S
5

Execute traffic

engineering based
on predicted future
traffic demands

"

Carry out intrusion
detection by
looking at
unexpected events

Source: Kurose and Ross, 2020.

classify
arrivals
—_—

Perform traffic
classification based
on patterns existing
on network packets

.

) 1 A
01 4
w3100,

Source: https://towardsdatascience.com

+ resource management + fault management

Source: Michael Schapira: Al for networking, and networking for Al. The Networking Channel, 2023.

Available at https:/ /www.voutube.com/watch?v=16DvbfIUPSg

L

SMARTNESS

Make video
streaming decisions
based on predicted
download times of
video chunks

Source: https://granulate.io

Source: https://www.forbes.com

Run congestion
control based on
the prediction of the
bottleneck
bandwidth

+ channel modeling + ...

L. Gaspary
IPSIN "2024

20
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What is Machine Learning? P

L
SMARTNESS

e We wish to give computers the ability to learn
o Learning is the process of converting experience into expertise or knowledge
e Applied to:
S. Shalev-Shwartz and S. Ben-David, Understanding Machine
O TaSkS that are too complex to prOgl‘am Learning: From Theoryto Algorithms. Wile y, 2014.

o Time-varying systems (adaptivity) Boutaba et al., 2018)

Historical data Newdata... Historical data
. ‘ ............... >O Outcome
...'Q'J ‘ -....A /“N
o O ( )
O -
O O Inferrea data
O O
lOutcome

Historical data

Y (a) Clustering (b) Classification (¢c) Regression (d) Rule extraction

UUUUUUU



How AI/ML for networks? QGQ

Main methods SMARTNESS

 Two main phases: training and inference

* Training data is labelled

 SVM, Neural Network, Decision Tree, Ensemble
Tree models, Nalve Bayes, K-Nearest Neighbor

Supervised learning

* |nputs of the learning algorithms are not labelled
* Must learn patterns from the inputs
 K-means, Isolation Forest, PCA, Autoencoder, SOM

* Agent learns to achieve a goal by interacting

with the environment (rewards and penalties)
* Q-learning, SARSA

Source: Ricardo Parizotto, Bruno Loureiro Coelho, Diego Cardoso Nunes, Israat Haque, and Alberto Schaeffer-Filho: L. Gaspary 28
Offloading Machine Learning to Programmable Data Planes: A Systematic Survey. ACM Comput. Surv. 56, 1, Article 18 (2024). IPSIN "2024



Types of ML - Intelligence (1/3) @/\
L

Supervised Learning SMARTNESS

N

All labels Some labels

(supervised) AR (semi-supervised) Learning approach Training dataset Problems aimed
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(Boutaba et al., 2018)




Sales

Types of ML - Intelligence (1/3) QGQ

SuperVised Learning SMARTNESS

Detecting anomalies, intrusion detection, traffic classification.

For example, using labeled data
o to predict Mean Opinion Score (MOS) — Classification
o or forecast Quality of Experience (QoE) — Regression

Sales
Sales

I I I I I T I I I I I T 1 I I I 1 I I
0 50 100 200 300 0 10 20 30 40 50 0 20 40 60 80 100 X, X,

TV Radio Newspaper



Types of ML - Intelligence (2/3)
Unsupervised Learning M ART';F

Alllabels some labels Learning approach Training dataset Problems aimed

(Supervised) (Semi-supervised)

v Unsupervised Unlabeled Clustering

--{ Data collection } ---------

- J’ ~ Clustering

Feature
engineering
\ J

---)[ Model learning }

Labels
(Unsupervised)

Feature Model

> Qutcome

processing

(Boutaba et al., 2018)
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Types of ML - Intelligence (2/3) QGQ

Unsupervised Learning SMARTNESS

Network clustering, identifying patterns in user behavior.

For example, Grouping similar network traffic
o for improved load balancing / routing / network function chains

Original unclustered data Clustered data




Types of ML - Intelligence (3/3) QGQ

Reinforcement Learning SMARTNESS

For example,

e Optimizing Flow Routing, Dynamic Routing, Adaptive Traffic
Management, Resource Allocation, etc.

ACTION

— L

“

EXPLORATION NEURAL
POLICY NETWORKS
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kol
3 e ENVIRONMENT

r
STATE, REWARD




Machine Learning Pipeline QGQ

SMARTNESS
e Data Collection (gathering data) | Data collection |
e Data Preprocessing (cleaning, transforming) “ :
|Data preprocessing |‘—
e Data Splitting (train/test split) T *
e Model Selection (algorithm choice) | ool i l'—

Y

e Model Training (fit model) —»lTrainingand validationl

e Model Evaluation (assess performance)

I Evaluati I
e Model Testing (final test) e

e Model Deployment (production use) Firal : el ]




MIL: discipline vs tool to solve complex problems

ML in TMA about trying different algorithms to obtain better results. I (\I_l; I

SMARTNESS

To build a solid house on your own, you need to know about architecture, as
‘B well as about the intrinsic characteristics of the construction toolbox. ..

Two commonly arising problems when coupling ML and Networking:

(I) You have to understand the problem:

@ Even a ML expert fails to achieve a good networking solution if he
neither knows the good descriptors nor understands the problem (e.g.,

try to classify flows using only port numbers).

@ Keep the scope narrow, to better understand the overall process (i.e.,
from selecting features to evaluation and conclusions).

@ The solution must be meaningful in practical terms (e.g., predicting QokE
from descriptors that can’t be controlled is pretty useless for QokE

management).

Pedro CASAS AIMANETS Can a Network Learn?

35

Source: Slide Courtesy by Pedro Casas: https:/ /bigdama.ait.ac.at/pcasas/
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MIL: discipline vs tool to solve complex problems

ML in TMA about trying different algorithms to obtain better results. I (\|—|: I

SMARTNESS

To build a solid house on your own, you need to know about architecture, as
sl well as about the intrinsic characteristics of the construction toolbox. ..

Two commonly arising problems when coupling ML and Networking:

(II) You have to understand the tool:

@ The broader overview you have about the particularities of each ML
approach, the better chances to apply the correct one (e.g., avoid killing
mosquitos with a hammer).

@ The research community does not benefit any further from yet another
untried ML approach (e.g., IDS based on KDD'99 dataset).

@ A good grasp of calculus, linear algebra, and probability is essential for a
clear understanding of ML and PR in TMA and Networking.

Pedro CASAS AIANETS Can a Network Learn?

36

Source: Slide Courtesy by Pedro Casas: https:/ /bigdama.ait.ac.at/pcasas/
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Machine Learning Model Categories

SMARTNESS

Machine Learning

. . Unsupervised Reinforcement
Supervised Learning Leamning Leaming
I I ' '
Regressions Classification K-means Q-learning
N Deep
Decision Tree Decision Tree Self-?\;gamzmg Reinforcement
i Network
[ |
Linear Regressions Logistic Regressions Expectation-
Maximization
' ' Algorithm
Deep Neural Network Random Forest
[ Generative
Support \_/ector Adversarial Networks
Deep Neural Network = Machine
gggvg'l;tma' Neural l Source: M. A. Ridwan, N. A. M. Radzi, F. Abdullah and Y. E. Jalil, "Applications of Machine
"’ r ' [ [} [} °
Deep Belief Network. Naive Bayes Learning in Networking: A Survey of Current Issues and Future Challenges," in IEEE Access 2021
Recurrent Neural Network ]
Deep Neural Network| T Brink, J. W. Richards, and M. Fetherolf, Real-World Machine Learning. Shelter Island, N, USA:
Manning, 2017.



Machine Learning Model Categories

(4

SMARTNESS
N

X} Classification

Separating (1 error
Hyperplane & - :

/ ¢
Optimal
Hyperplane Optimal margin

&

-

X2 Classification error

SOLLLLC. lvli. [}, INIULVVALL, LN. [}, 1V1. 1NAUZLL, 1. [AvUduJdliialidliivg 1. L. jallii, ﬂl:)]_

Learning in Networking: A Survey of Current Issues and Future Challenges," in IEEE Access 2021
[llustration of SVM hyperplane in 3-dimension space and its

optimal hyperplane and margin in 2-dimension space |



Machine Learning Model Categories e

SMARTNESS

Machine Learning ‘ Dataset |
—
_,.////,7] K‘\-\
. . "'/-F ' \.-\‘-_*
Supervised Learning Unf:gﬁmzed Reuggrrc’:\?rr‘gent Fea‘u rel Featg re2 Featur en
l l L * - ) & -®
v L ¢ & ¢ O ¢ o6 ¢ O o o o o
Regressions Classification K-means Q-learning R EEEEEE Y Y T EEEEERY
Classification 1 Classification 2 Classification n
. Deep
Decision Tree Decision Tree Self-c:\;gamzmg Reinforcement
1 1 - Network | . |
| Majority voting
Linear Regressions Logistic Regressions Expectation- ‘
I i Maximi;ation &
Algorithm ‘ Final-class
Deep Neural Network Random Forest
_ Generative . llustration of Random Forest classifier
Support Vector Adversarial Networks
Deep Neural Network = Machine
gggvg:l;tlonal Heurs ' Source: M. A. Ridwan, N. A. M. Radzi, F. Abdullah and Y. E. Jalil, "Applications of Machine
", ’ [ ] [ ] [ ] L4

Deep Belief Network. Naive Bayes Learning in Networking: A Survey of Current Issues and Future Challenges," in IEEE Access 2021

Recurrent Neural Network

1
Deep Neural Network| T Brink, J. W. Richards, and M. Fetherolf, Real-World Machine Learning. Shelter Island, N, USA:

Manning, 2017.




Artificial Intelligence — As Smart as a Donut!

* Machine Learning is still very stupid — the big revolution is on
big data processing and data availability/accessibility

(4

SMARTNESS

* Current ML benefits are fundamentally due to machines ability to blindly:
* compute lots of math operations per second
* handle large amounts of data
= deal with data in high-dimensional spaces

* A lot of data required to “learn” simple logical inter-relations

* Shallow Learning: less data but human expert knowledge required, to
properly guide the feature engineering process

* Deep Learning: automated feature engineering (representation learning)
but needs much more data

RawPower

we explore deep learning for blind malware detection in network traffic

40

Source: Slide Courtesy by Pedro Casas: https:/ /bigdama.ait.ac.at/pcasas/
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Shallow Learning vs Deep Learning

f
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Domain expert

Shallow Machine Learning

\
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Feature representation + classification

\Input data stream e et T Classification
Deep Learning
8@128x128 A 29Q16x36 12256
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01110110 ¥ Chrkput
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Max-Pool Conwolution Max-Pool Denze Dense

Source: Slide Courtesy by Pedro Casas: https://bigdama.ait.ac.at/pcasas/
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SMARTNESS
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Basic Concepts of RawPower

(42

SMARTNESS

* The input to the Deep Learning model is RAW — only byte-streams

* No need to define tailored, domain-knowledge-based input features

i e oo e Cezag o)
Network Traffic
Capturing

RawPower

i1l

= Different architectures to analyze both packet-based and flow-based byte
aggregations

* Models for binary malware detection — fully supervised-based training
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SMARTNESS

What is Blocking AI/ML in
Networking?

e Challenges
e Hazards
e Trade-offs




R e
y -

»
o
7, ‘

has produced
In current data
driven landscape...

ey

=

W i
...Its successful application to data

communication networks is still at a
very early stage

¥ gl T gt N S "I L e i T '
' “" ‘x\,m Py :*'(‘mv‘.‘*‘ o } ‘m\,\\ -"" . \}\\“
T g, e T PO . PES o YRR
|

-

ﬁ

LA Le™ N
- s -'I “

e T N — =

. .
- 5 AVTSeRe - .
J ~ : "N - 4 ‘ “‘v "5 “-.\'

.¥~- :

Source: Slide Courtesy by Pedro Casas: https:/ /bigdama.ait.ac.at/pcasas/

ata

44


https://bigdama.ait.ac.at/pcasas/

AIANETS - Application to Other Domains :r_\':

= AI4NETS represents a complex context for Al/ML, opening the door to other fields SMARTNESS

* The challenge is huge:

= AI4NETS involves all of the major learning and big data challenges (the 4 Vs)

= Massive volumes of complex and heterogeneous data (Volume and Variety)

= Fast and highly dynamic streams of data (Velocity)

* Lack of ground truth for learning (Veracity)

2R P
8 INTERNETor ‘ . ' @@b
B HING S ) TN D
=R L .. e
loT Industry 4.0 Scalable Computing Trading Blockchains
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What is Blocking Al Success in Networking?

wd
SMARTNESS

* Data Complexity: the complexity (and heterogeneity) of the data related to Internet-like
networks is one of the most significant bottlenecks to AI4ANETS

* The Internet, and in general large-scale networks, are a complex tangle of networks,
technologies, applications, services, devices and end-users

= Al has so far shown very successful results generally in data from more predictable and
easy to understand sources (natural sources)

46
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What is Blocking Al Success in Networking?

(42

SMARTNESS

= Diversity of Network Data: besides complexity, network data often exhibits much
more diversity than one would intuitively expect

Global Transit / "Hyper Giants"

Global Internet National Large Content, Consumer, Hosting CDN
Core Backbones

learn |here ' ‘ m '
Regional / Tier2 ’
Iearf here

e | QO000QOUC
Networks |

learn here apply here apply here
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* Data Dynamics: networking data is non-stationary, generally comes in the form of
data streams, and is full of constant concept drifts SMARTNESS

What is Blocking Al Success in Networking? (\
(h4
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What is Blocking Al Success in Networking?
* Lack of Ground Truth: in the wild networking data is usually non-labeled

* Lack of Standardized and Representative Datasets: datasets are generally biased,
difficult to find appropriate public datasets to assess AI4ANETS

- y - ‘ . " -y ’ 4 -i p v v - -— ? > T W : N
; —— oK . . - = ey N - . 5 ) ‘- : 2 ‘ « " -
P R T\ s Y a2 o, lCRwe we y =20
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"""""

* There is no IMAGENET or the like in Networking

= Network data labeling, and even data interpretation, is too complex for humans,
even for domain experts (e.g., malware vs benign traffic instead of cat vs dog)
= Easier for naturally generated data: images, text, audio

Source: Slide Courtesy by Pedro Casas: https:/ /bigdama.ait.ac.at/pcasas/
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What is Blocking Al Success in Networking? (\
(h4

* Lack of Interpretability: this is a general problem of ML models (e.g., DL provides
beautiful black-boxes)...but the issue is even more complex in AI4NETS SMARTNESS

* To improve trust, the end-user (humans) has to trust model predictions, for

example, by understanding which inputs lead to a specific output, but generally
difficult to interpret networking features

6 )G I

Training Learning  Explainable ainable Inte

User with
Data Process Model a Task

* The lack of interpretability and trust stops Al deployments:
* Network security — AI4ANETSEC
* Dynamic Traffic Engineering — AIANETTE
= Dynamic network instantiation (NFV) and (re)-configuration (SDN) — AI4SELFNET
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What is Blocking Al Success in Networking?

= Learning occurs in an Adversarial Setting: services obfuscate and modify their
functioning to bypass monitoring and avoid traffic engineering policies

Malware Obfuscation

T %

| WHAT YOU SEE IS |

CNOT

WHAT YOU GET |

<Unpack Code>
EDCPypt/ ioeen0E

Compress/ vras K MRNL]
Transform SON.O¢

M Xeysan:

Push EBP
MOV EBP, ESP
SUB ESP, 8
CALL 00401170

* |t becomes even more trickier to learn, when the adversary constantly tries to
fool the learner

= Not only malign actors, but standard services: Skype, QUIC, etc.

Source: Slide Courtesy by Pedro Casas: https:/ /bigdama.ait.ac.at/pcasas/
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What is Blocking Al Success in Networking?

* [ack of Learning Generalization: it becomes extremely difficult in the networking

practice to learn models which can generalize to operational environments

Human-Driven
Automation

P —

« Standard-based
network interfaces
and data models

* Automate network
provisioning and
management

« Simplify network
operations

Source: Slide Courtesy by Pedro Casas: https:/ /bigdama.ait.ac.at/pcasas/
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Event-driven
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Actionable
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* Integration with Full

IT infrastructure
(Orchestration, etc.)

« Rule-based Actions

driven by events

Machine-Driven

Automation

S

« Use sophisticated

algorithms (statistics)

* Pre-programed

machines makes
decisions and drives
network change

» Humans make

decisions where
machines cannot

Autonomy

S Sy n

* |ntegrated machine-

learning algorithms
into the system

« Adaptive machine

decisions drive
network change

* Human supervision,

no active intervention
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Why XAlI?

* |deally, ML models should be self-explanatory: improve end-user understanding

d

and trust, by offering simple explanations of the “whys” of certain decision SMARTNESS

* Only few models are self-explanatory:
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Linear Regression
Decision Tree
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.

Logistic Regressior /(.\ :

self-explanatory

Random Forest

Deep Net

model complexity
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Table 2 Performance metrics for accuracy validation

Metric

Mean Absolute Error
(MAE)

Mean Squared Error
(MSE)

Mean Absolute Prediction
Error (MAPE)

Root MSE (RMSE)

Normalized RMSE
(NRMSE)

Cross-entropy

Accuracy

True Positive Rate (TPR)
or recall

False Positive Rate (FPR)

True Negative Rate (TNR)

False Negative Rate
(FNR)

Received Operating
Characteristic (ROC)

Area Under the ROC
Curve (AUC)

Precision

F-measure

Coefficient of Variation
(CV)

Description

Average of the absolute error between the ac-
tual and predicted values. Facilitates error inter-
pretability.

Average of the squares of the error between the ac-
tual and predicted values. Heavily penalizes large
erTors.

Percentage of the error between the actual and pre-
dicted values. Not reliable for zero values or low-
scale data.

Squared root of MSE. Represents the standard de-
viation of the error between the actual and pre-
dicted values.

Normalized RMSE. Facilitates comparing differ-
ent models independently of their working scale.

Metric based on the logistic function that measures
the error between the actual and predicted values.

Proportion of correct predictions among the to-
tal number of predictions. Not reliable for skewed
class-wise data.

Proportion of actual positives that are correctly
predicted. Represents the sensitivity or detection
rate (DR) of a model.

Proportion of actual negatives predicted as posi-
tives. Represents the significance level of a model.

Proportion of actual negatives that are correctly
predicted. Represents the specificity of a model.

Proportion of actual positives predicted as neg-
atives. Inversely proportional to the statistical
power of a model.

Curve that plots TPR versus FPR at different pa-
rameter settings. Facilitates analyzing the cost-
benefit of possibly optimal models.

Probability of confidence in a model to accurately
predict positive outcomes for actual positive in-
stances.

Proportion of positive predictions that are cor-
rectly predicted.

Harmonic mean of precision and recall. Facilitates
analyzing the trade-off between these metrics.

Intra-cluster similarity to measure the accuracy of
unsupervised classification models based on clus-
ters.
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ML for Computer Systems and Networking

Survey of selected problem and solution examples SMARTNE
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2 Machine Learning for Computer Systems and Networking:

A Survey ML for computer systems and networking

MARIOS EVANGELOS KANAKIS, Vrije Universiteit Amsterdam
RAMIN KHALILI, Huawei Munich Research Center
LIN WANG, Vrije Universiteit Amsterdam and TU Darmstadt

Machine learning (ML) has become the de-facto approach for various scientific domains such as computer
vision and natural language processing. Despite recent breakthroughs, machine learning has only made its
way into the fundamental challenges in computer systems and networking recently. This article attempts
to shed light on recent literature that appeals for machine learning-based solutions to traditional problems
in computer systems and networking. To this end, we first introduce a taxonomy based on a set of major
research problem domains. Then, we present a comprehensive review per domain, where we compare the
traditional approaches against the machine learning-based ones. Finally, we discuss the general limitations
of machine learning for computer systems and networking, including lack of training data, training overhead,
real-time performance, and explainability, and reveal future research directions targeting these limitations.

Problem space Solution space

CCS Concepts: « General and reference — Surveys and overviews; - Computer systems organization;
« Networks;

Computer systems Computer networking Paradigm Environment Temporality
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1 INTRODUCTION

Revolutionary research in machine learning (ML) has significantly disrupted the scientific com-
munity by contributing solutions to long-lived challenges. Thanks to the continuous advancements
in computing resources (e.g., cloud data centers) and performance capabilities of processing units
(e.g., accelerators like GPUs and TPUs), ML, particularly its rather computation-expensive subset
namely deep learning (DL), has gained its traction [120, 131]. In general, ML has established
dominance in vision tasks such as image classification, object recognition [86], and more to fol-
low [58, 156]. Other remarkable examples where ML is thriving include speech recognition [52]
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Abstract Machine Learning (ML) has been enjoying an un-
precedented surge in applications that solve problems and
enable automation in diverse domains. Primarily, this is due
to the explosion in the availability of data, significant im-
provements in ML techniques, and advancement in com-
puting capabilities. Undoubtedly, ML has been applied to
various mundane and complex problems arising in network
operation and management. There are various surveys on
ML for specific areas in networking or for specific network
technologies. This survey is original, since it jointly presents
the application of diverse ML techniques in various key ar-
eas of networking across different network technologies. In
this way, readers will benefit from a comprehensive discus-
sion on the different learning paradigms and ML techniques
applied to fundamental problems in networking, including
traffic prediction, routing and classification, congestion con-
trol, resource and fault management, QoS and QoE manage-
ment, and network security. Furthermore, this survey delin-
eates the limitations, give insights, research challenges and
future opportunities to advance ML in networking. There-
fore, this is a timely contribution of the implications of ML
for networking, that is pushing the barriers of autonomic net-
work operation and management.

Keywords Machine learning - traffic prediction - traffic
classification - traffic routing - congestion control -
resource management - fault management - QoS and QoE
management - network security

1 Introduction

Machine learning (ML) enables a system to scrutinize data
and deduce knowledge. It goes beyond simply learning or

'David R. Cheriton School of Computer Science,
University of Waterloo
*Department of Telematics, University of Cauca

extracting knowledge, to utilizing and improving knowledge
over time and with experience. In essence, the goal of ML
is to identify and exploit hidden patterns in “training” data.
The patterns learnt are used to analyze unknown data, such
that it can be grouped together or mapped to the known
groups. This instigates a shift in the traditional program-
ming paradigm, where programs are written to automate
tasks. ML creates the program (i.e., model) that fits the data.
Recently, ML is enjoying renewed interest. Early ML tech-
niques were rigid and incapable of tolerating any variations
from the training data [134].

Recent advances in ML have made these techniques flex-
ible and resilient in their applicability to various real-world
scenarios, ranging from extraordinary to mundane. For in-
stance, ML in health care has greatly improved the areas of
medical imaging and computer-aided diagnosis. Ordinarily,
we often use technological tools that are founded upon ML.
For example, search engines extensively use ML for non-
trivial tasks, such as query suggestions, spell correction, web
indexing and page ranking. Evidently, as we look forward to
automating more aspects of our lives, ranging from home
automation to autonomous vehicles, ML techniques will be-
come an increasingly important facet in various systems that
aid in decision making, analysis, and automation.

Apart from the advances in ML techniques, various other
factors contribute to its revival. Most importantly, the suc-
cess of ML techniques relies heavily on data [77]. Undoubt-
edly, there is a colossal amount of data in todays’ networks,
which is bound to grow further with emerging networks,
such as the Internet of Things (IoT) and its billions of con-
nected devices [162]. This encourages the application of ML
that not only identifies hidden and unexpected patterns, but
can also be applied to learn and understand the processes
that generate the data.

Recent advances in computing offer storage and process-
ing capabilities required for training and testing ML mod-
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Network Traffic Prediction via Time Series Forecasting (TSF)

Table 3 Summary of TSF and non-TSF-based Traffic Prediction

Ref. ML Technique Application _Dataset Features Output - — Xy naton -
(approach) (availability) (training) Settings™ Results*
Supervised: End-to-end path NSF TeraGrid Max, Min, Avg Available Number of MSE = 8%
NBP [141] - MLP-NN bandwidth dataset load observed in bandwidth on a features= 3
(offline) availability (N/A) past 10s ~ 30s end-to-end MLP-NN:
prediction path in future - (N/A)
(TSF) epoch
Cortez et Supervised: Link load and traffic SNMP traffic data Traffic volume Expected Number of 1h lookahead:
al. [104] - NNE trained volume prediction from 2 ISP nets, observed in past traffic volume features=6 ~ 9 - MAPE = 1.43%
with Rp in ISP networks - traffic on a few 5 NNs NNE: ~ 5.23%
(offline) (TSF) transatlantic link minutes~several - all SLPs for dataset] lh ~ 24h
- aggregated traffic days - 1 hidden layer lookahead:
in the ISP backbone MLPs with 6 ~ 8 - MAPE =
(N/A) neurons for dataset2 6.34% ~ 23.48%)
Bermolen Supervised: Link load prediction | Internet traffic Link load Expected link Number of RMSE < 2 for
etal. [52] - SVR in ISP networks collected at the observed at T time | load features= d samples T=Imsandd =5
(offline) (TSF) POP of an ISP scale withd = 1..30 . =~ AR
network Number of support -10% less than MA
(N/A) vectors:
- varies with d (e.g.,
~ 320 for d = 10)
Chabaa et Supervised: Network traffic 1000 points dataset | Past Expected Number of features LM:
al. [86] MLP-NN with prediction (N/A) measurements traffic volume (N/A) - RMSE=0.0019
different (TSF) MLP-NN: RPE = 0.0230%
training - 1 hidden layer Rp:
algorithms - RMSE=0.0031
(GD, CG, SS, RPE=0.0371%
LM, Rp)
(offline)

SMARTNESS

Source: R. Boutaba et al. “ A comprehensive survey on machine learning for networking: evolution, applications and research opportunities”. JISA, 2018.
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Abstract—5G communication technologies promise reduced
latency and increased throughput, among other features. The
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YouTube goes 5G: QoE Benchmarking
and ML-based Stall Prediction
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Abstract—Given the dominance of adaptive video streaming
services on the Internet traffic, understanding how YouTube
Quality of Experience (QoE) relates to real 4G and 5G Channel
Level Metrics (CLM) is of interest to not only the research
community but also to Mobile Network Operators (MNOs) and
content creators. In this context, we collect YouTube and CLM
logs with 1-second granularity spanning a six-month period.
We group the traces by their context, i.e., Mobility, Pedestrian,
Bus/Railway terminals, and Static Outdoor, and derive key
performance footprints of real 4G and 5G video streaming in
the wild. We also develop Machine Learning (ML) classifiers to
predict objective QoE video stalls by using past patterns from
CLM traces. We release all datasets and software artifacts for
reproducibility purposes.

Index Terms—5G, QoS, QoE, Machine Learning, YouTube.

I. INTRODUCTION

Mobile video traffic is continuously growing, thus adding
an additional challenge for Mobile Network Operators
(MNOs) to manage this exponential growth [1]. Applica-
tions utilizing social media, gaming, and recent advances in
Augmented/Virtual Reality and UHD videos have accelerated
the demands for the next generation of networks, 5G [2].
The New Radio (NR) of 5G technology is developed to ad-
d igh bandwidth, low latency, and massive connectivit

chadi.barakat@inria.fr

chesteve @dca.fee.unicamp.br

videos of diverse type (e.g., Nature, Animation, Movie, Brand
Promotions) at different Frame Per Second (FPS) rates and
under varying context scenarios: (i) Mobility, (ii) Pedestrian,
(iii) Bus/Railway terminals, and (iv) Static Outdoor. Next,
we study the relationship between the Channel Level Met-
rics (CLM) and objective QoE scores of YouTube. This study
helps us to propose a QoE interruption (Stall) prediction
method based only on CLM metrics. We carry out a rich 4G
and 5G dataset collection campaign using commercial 4G and
5G networks, where we consider YouTube as a baseline for
video streaming to collect CLM and YouTube QoE logs with
I-second granularity. All videos are selected from different
categories such as Sports, Animated, Movies, Nature, etc. In
addition, we consider videos with 4K quality and some that
coded at 60 FPS. We provide detail of each video in [8]. Our
contributions can be summarized as follows:

« We collect 4G and 5G datasets with channel and context
using YouTube as a baseline at the smallest granularity
of 1-second in a rich set of use case scenarios.

« We derive a model relating CLM measurements to video

Ils using a time-based method. We check for different

Brazil

chesteve @dca.fee.unicamp.br
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Why are traditional QoS metrics, like latency
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accurately predicting QoE in 5G networks
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ABSTRACT

Future fifth generation (5G) networks are envisioned to provide
improved Quality-of-Experience (QoE) for applications by means
of higher data rates, low and ultra-reliable latency and very high
reliability. Proving increasing beneficial for mobile devices running
multimedia applications. However, there exist two main co-related
challenges in multimedia delivery in 5G. Namely, balancing opera-
tor provisioning and client expectations. To this end, we investigate
how to build a QoE-aware network that guarantees at run-time that
the end-to-end user experience meets the end users’ expectations
at the same that the network’s Quality of Service (QoS) varies.
The contribution of this paper is twofold: First, we consider a
Dynamic Adaptive Streaming over HTTP (DASH) video application
in a realistic emulation environment derived from real 5G traces in
static and mobility scenarios to assess the QoE performance of three
state-of-art Adaptive Bitrate Streaming (ABS) algorithm categories:
Hybrid - Elastic and Arbiter+; buffer-based - BBA and Logistic; and
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1 INTRODUCTION

The steady growth of Internet data services drove the development
of third (3G) and fourth (4G) generations of the mobile commu-
nications standard. Now, the technology is evolving towards its
fifth-generation (5G), motivated by similar traffic demands. 5G [23]
is expected to support significantly higher throughput (10 Gbps), 1-
millisecond end-to-end over-the-air latency, real-time information
processing and transmission, and lower network management op-
eration complexity. In video streaming, HTTP Adaptive Streaming
(HAS) is the de-facto choice of popular services such as YouTube

razaul @dca.fee.unicamp.br

Abstract—5G communication technologies promise reduced
latency and increased throughput, among other features. The
so-called enhanced Mobile Broadband (eMBB) type of services
will contribute to further adoption of video streaming services.
In this work, we use a realistic emulation environment based on
5G traces to investigate how Dynamic Adaptive Streaming over
HTTP (DASH) video content using three state-of-art Adaptive
Bitrate Streaming (ABS) algorithms is impacted in static and
mobility scenarios. Given the wide adoption of end-to-end
encryption, we use machine learning (ML) models to estimate
multiple key video Quality of Experience (QoE) indicators
(KQIs) taking network-level Quality of Service (QoS) metrics as
input features. The proposed feature extraction method does not
require chunk-detection, significantly reducing the complexity
of the monitoring approach and providing new means for QoE
evaluation of HAS protocols. We show that our ML classifiers
achieve a QoE prediction accuracy above 91%.

Index Terms—5G, QoE, TLS, machine learning, QoS,
HTTPS, DASH, HAS

[. INTRODUCTION

Video content providers such as YouTube, Netflix, Ama-
zon Prime, and Hulu use HTTP adaptive streaming (HAS)
with HTTPS to deliver end-to-end encrypted video streaming
services [2]. Cisco predicts that the HAS traffic will be at
the top of traffic load with 82% from all Internet traffic

~
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art Adaptive Bitrate Streaming (ABS) algorithms for video
quality adaptation, namely: (/) Hybrid — Elastic, (if) Buffered
— BBA, and (iii) Rate-based — Conventional [11]. The main
contributions of this work can be therefore summarized as:

e QOE assessment in 500 ms time window with varying
bandwidth in static and mobile 5G scenarios. This 1s the
smallest granularity proposed so far for the detection of
anomaly and troubleshooting approaches. The analysis
is undertaken through objective QoE models such as the
P.1203 QoE standard [8, 6].

« A proposal of a machine learning classifier to estimate
QoE based on packets length distribution into (10-90)
percentile in (0.5 s intervals. Moreover, the classifiers
are unaware of the specific ABS algorithm and 5G
scenarios, using only network QoS metrics (throughput
and packets) and not requiring any chunk detection.

II. RELATED WORK

Previous works support that stalls, resolutions and bitrate
are the main reasons that affect end users QoE [10]. However,
other factors cannot be ignored as well, such as ABS
adaptation mechanisms. Similarly, it has also been observed
that continuous quality switching is also a relevant QoE

() Z
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SMARTNESS

e Interpacket Gap — IPG can be used as a key metrics for objective QoE
assessment
o From IPG we can derive a few more metrics for QoE, such as EMA,

DEMA, CUSUM

e |[PGs along with other traditional QoS metrics are highly correlated to
objective QoE KPIs

e Machine Learning can be used to predict QoE
o correlation with flow-level and network QoS metrics



Regression - Unencrypted Traffic (1/2)

(4

SMARTNESS

Which QoS features can be effectively used from the
network level of unencrypted DASH traffic to estimate the
QoE of adaptive video streaming?

Per-segment QoS features

o RTT

e Packets
e Throughput relation to QoE

YA

Observed value

Y,
Random error Ei
Y
P;

Predicted value

Intercept 61 {

XY

Xi



Regression - QoS Features (2/2)

1. Per-segment based QoS features.

a. RTT
b. Throughput @  scoment Get Request
C P&Ckets ‘ Downloaded Packet

2. Adaptation algorithms correlation with different

network use cases. ‘ ‘ . . - = ‘ ‘ .

a. Buffered — BBA
b. Hybrid — Klastic L L y

. 0 T
c. Throughput — Conventional -

Downloaded Time

Throughput = Downloaded Packet Size / (RTT + Downloaded Time)



Classification - Encrypted Traffic (1/3) @Q

SMARTNESS

Network Traffic

.— #

2 .Full Session

1-second window IPGs

saamedq Sod) 1€

28 QoS Features |




Classification - QoS Features (2/3)

Real Time (Window) Comments

Packets count (total) [ w/ gt 100B] Ignoring ack packets of size 100B

Packet size distribution [w, (10-90)p] 10-90 percentile packet size distribution in a
window

Throughput [w, distribution (10-90)p] 10-90 percentile throughput distribution in a
window

Packet Time [IPGs, Inter Arrival Time] Inter Packet Gap (IPGs) of a window

IPGs features [EMA, DEMA, CUSUM] See the continuity of packets

IPGs [Avg, Std, w/ gt100B] Average, Standard deviation of window




Classification - ML Algorithms (3/3)

(4

Supervised Machine Learning based
model for objective assessment, such
as,

e Decision Tree

e Random Forest

e K-nearest neighbors

e Artificial Neural Network (ANN)

Mapping between QoS and QoE KPIs for
certain actions, I.e., resources
optimization, SLA, SDN decisions.

SMARTNESS

Objective QoE
e Stalls

e Bitrate
e Shifts

QoE = Given the input
features, predict QoE values

Models accuracy = Highly
correlated features

Models — Regressions
(continuous) and
classifications (categorical)




Correlation - QoS to QoE C_]GQ

Use Case SMARTNESS

QoS features correlation with the objective QoE stall and
quality shifts.

Shifts and stalls are the main QoE indicators *

150000 -

100000 -

e 5G — Blue (Real Traces)
e 4G — Green (Real Traces) ”

0 100 200 300 400
— 4G

QoS Bandwidth K

40000 -

20000 -
0 - ‘ l_l.
0 50 100 150 200 250 300 350 400

QoS Bandwidth Instances

* Fan Zhang, Long Xu, and Qian Zhang. 2013. Maximum-likelihood visual quality based on additive log-logistic
model. In 2013 IEEE 15th International Workshop on Multimedia Signal Processing (MMSP). IEEE, 470-475.
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Correlation - 4G SMARTNESS
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Correlation - 5G SMARTNESS
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How does ML help correlate complex QoS data,
such as RSRP and RSRQ, with user-perceived

video quality on YouTube?

YouTube goes 5G: QoE Benchmarking
and ML-based Stall Prediction

Raza Ul Mustafa Chadi Barakat

Christian Esteve Rothenberg

University of Campinas (UNICAMP) Inria, Université Cote d’Azur University of Campinas (UNICAMP)
Brazil France Brazil

razaul @dca.fee.unicamp.br

Abstract—Given the dominance of adaptive video streaming
services on the Internet traffic, understanding how YouTube
Quality of Experience (QoE) relates to real 4G and 5G Channel
Level Metrics (CLM) is of interest to not only the research
community but also to Mobile Network Operators (MNOs) and
content creators. In this context, we collect YouTube and CLM
logs with 1-second granularity spanning a six-month period.
We group the traces by their context, i.e., Mobility, Pedestrian,
Bus/Railway terminals, and Static Outdoor, and derive key
performance footprints of real 4G and 5G video streaming in
the wild. We also develop Machine Learning (ML) classifiers to
predict objective QoE video stalls by using past patterns from
CLM traces. We release all datasets and software artifacts for
reproducibility purposes.

Index Terms—5G, QoS, QoE, Machine Learning, YouTube.

I. INTRODUCTION

Mobile video traffic is continuously growing, thus adding
an additional challenge for Mobile Network Operators
(MNOs) to manage this exponential growth [1]. Applica-
tions utilizing social media, gaming, and recent advances in
Augmented/Virtual Reality and UHD videos have accelerated
the demands for the next generation of networks, 5G [2].
The New Radio (NR) of 5G technology is developed to ad-
dress high bandwidth, low latency, and massive connectivit

chadi.barakat@inria.fr

chesteve @dca.fee.unicamp.br

videos of diverse type (e.g., Nature, Animation, Movie, Brand
Promotions) at different Frame Per Second (FPS) rates and
under varying context scenarios: (i) Mobility, (ii) Pedestrian,
(iti) Bus/Railway terminals, and (iv) Static Outdoor. Next,
we study the relationship between the Channel Level Met-
rics (CLM) and objective QoE scores of YouTube. This study
helps us to propose a QoE interruption (Stall) prediction
method based only on CLM metrics. We carry out a rich 4G
and 5G dataset collection campaign using commercial 4G and
5G networks, where we consider YouTube as a baseline for
video streaming to collect CLM and YouTube QoE logs with
I-second granularity. All videos are selected from different
categories such as Sports, Animated, Movies, Nature, etc. In
addition, we consider videos with 4K quality and some that
coded at 60 FPS. We provide detail of each video in [8]. Our
contributions can be summarized as follows:

e We collect 4G and 5G datasets with channel and context
using YouTube as a baseline at the smallest granularity
of I-second in a rich set of use case scenarios.

e We derive a model relating CLM measurements to video
stalls using a time-based method. We check for different

(4
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Running YouTube in multiple 4G/5G scenarios SMARTNESS

e 5G outperforms 4G in YouTube
streaming, as expected, but

Channel Logs QoE Logs
performance over currently OD) ca St
((2)° == o

deployed 5G nets is still not ideal RSS! Resolutions

SNR

. o] e Download Bitrate Sons DL Per-Session Logs
e 5G behaves greedily under mobility Upload Bivat Stoll Events
= Stall Durati
I 1 Events all Duration
e 5G experiences more stalling " cuaty s
events compared to 4G in mobility - — Percentage o Time

Radio Channel YouTube Iframe API

o In 5G mobility, we observe a
16.67 % increase in stalling
events compared to those in 4G.



CLM - Player logs - Player events

(4

SMARTNESS

TABLE I: CLLM and their corresponding YouTube player logs and events for use case — Mobility, Technology — 5G

Channel metrics Player logs Player events
Time RSRP RSRQ SNR CQI DL_bitrate  Time Quality VBD LP Time Quality  Event
17.43.30 -97 -3 20 13 S 17.43.30 hd2160  0.128010425 12.8 17:43:30  hd2160  buftering
17.43.31 -97 -3 20 13 61350 17.43.31  hd2160 O 0 17:43:32  hd2160  playing
17.43.32 97 -3 20 13 86264 17.43.32 hd2160  0.08171254 8.2 - - -
17.43.33  -87 -3 21 13 94897 17.43.33 hd2160 0.102403732 10.2 - - -
17.43.34  -87 -3 21 15 4 17.43.34  hd2160 0.102403732 10.2 - - -

e Machine Learning Classifiers Features

o Previous times (window), i.e.,éj, 3, 5,7, 9)-seconds to see if there
E}SEIIQH gﬁrRrelatlon with the radio channel CLM, i.e., CQIl, RSRQ,

o i) Majority of a window, ii) Standard deviation, iii) 25, 50, and 75
percentile of a window.




Quality shifts — Resolutions

_ Mobility 4G _ Mobility 5G
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ds)

Video stream time (6+/min) (time in seconds)

(b) 5G — Stalls
TABLE II: 4G vs. 5G percentage of player resolutions, case
— mobility and pedestrian.

Case 480p hd720 hd1080 hd1440 hd2160
4G

Mobility Tl - 3.2 25.9 63.2

Pedestrian 04 9 33.2 24.8 37.9
5G

Mobility 0.2 99.8

Pedestrian 0.6 3.7 0.4 95.3

(4
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- 5G behaves greedily
under moDbIlty
- Even with .stallingb. .

events during mobility,
the player remains in
higher resolutions
instead of choosing a
segment with a lower

resolution and bitrate to
avoid stalls

- 5G outperformed 4G by
36.6 percent in hd2160
resolution. But! More
stalling events in

Mobility in 5G.
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Demonstration of ML-assisted Soft-Failure
Localization Based on Network Digital Twins

Kayol S. Mayer, Rossano P. Pinto, Jonathan A. Soares, Dalton S. Arantes, Christian E. Rothenberg,
Vinicius Cavalcante, Leonardo L. Santos, Filipe D. Moraes, and Darli A. A. Mello

Abstract—In optical transport networks, failure localization is networking (SDN) [4] and intent-based networking (IBN) [5],
usually triggered as a response to alarms and significant anoma-  [6] have contributed to novel control and management capa-
lous behaviors. However, the recent evolution of network control  pijities (7)-[9], including soft-failure management [10]-[19].

JInlike hard failures, which disrupt the service, soft failures
not severe enough to activate alarms. Eventually, the early
air of a soft failure can avoid the progressive degradation

l ' ::z‘;'g;v!:it) 30/08/2023 870230076927 1 hard failure. Soft-failure management can be divided into
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What Problems in Optical Communications and Networks need ML?

“NOC-less operation”

“Network Analytics”
“Pre-emptive Maintenance”
“Fault-identification / Troubleshooting”
“Health check”

“Network Recovery”

“Traffic Prediction”

“Predictive load balancing” JL,
“Optimized power utilization”

“Network Defragmentation” —|3aL
“Reach x capacity optimization” Els
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What Problems in Optical Communications and Networks need ML?

“NOC-less operation”

“Network Analytics” Failure

“Pre-emptive Maintenance” Management

“Fault-identification / Troubleshooting”
“Health check” OPM

“Network Recovery”

“Traffic Prediction”

“Predictive load balancing”
“Optimized power utilization” J

Traffic Prediction

N

e
-
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Network Defragmentation — 2L,

“Reach x capacity optimization”
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What problems in optical communications and networks need ML?

Al is a high-quality prediction technology, getting better every day

Prediction is the process of filling missing information

Predicting YouTube video has cats Predicting a driving action to be taken Predicting future stocks prices

(pattern detection with CNNs) (reinforcement learning with DNNs) (forecasting with RNNSs)

Al can find “missing information” in optical networks

Network traffic demands Future QoT of existing waves Future equipment failures

) QoT OPM
« Expected QoT for new waves * Root cause of subpar QoT « Future fiber cuts
» Physical parameters for unlit paths * Undetected anomalies  When fibers will exhaust
* Fiber power response « Future SNR margin » Dirty/loose connectors
s Elc. = Elc. « Etc. Failure
Management
Y P. Djukic, Ciena, OSA PC, 2020
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What problems in optical communications and networks need ML?
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An Optical Communication’s Perspective on
Machine Learning and Its Applications
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optical communications

[ ML applications in

NL mitigation Traffic Prediction QoT
OPM [ v $ : *

[ Optical performance ] [ Nonlinearity ] [ Proactive ] [ Software-defined ] [ Physical layer ] ..............

monitoring compensation fault detection networking design
ML algorithms ﬂ ﬂ ﬂ ﬂ ﬂ
used
a , 4 N
e ANN [34,37,38,50,51] 1 ( SVM [17,18,19,59] & C SVM with DES [68]\ e ANN [74,76,79] C DNN-based end-to-end L
e Kernel-based method [35] e ELLM [55] e Naive Bayes-based e (-learning [77] system optimization [80]
e PCA [39] e K-means [57] method [69] e (O-network [78] e ANN-based receiver for
e DNN [45.46,47] e EM algorithm [57.61] e ANN [70] N 2 NFDM systems [81]
b CNN [49] y e ANN [60] e ANN with shape- e ANN-based receiver for
e BP algorithm [62,63] based clustering [71] \ IM/DD systems [82] )
. £ \_ galil "Le
é",é QDNN 65 ] )
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What problems in optical communications and networks need ML?

An Overview on Application of Machine Learning
Techniques in Optical Networks

Francesco Musumeci, Member, IEEE, Cristina Rottondi, Member, IEEE, Avishek Nag, Member, IEEE, Irene
Macaluso, Darko Zibar, Member, IEEE, Marco Ruffini, Senior Member, IEEE, and Massimo
Tornatore, Senior Member, IEEE

F. Musumeci et al., in [IEEE Communications Surveys &
Tutorials, vol. 21, no. 2, pp. 1383-1408, 2018.
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What problems in optical communications and networks need ML?
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Optical Transmission

OPM

TABLE I: Different use cases at physical layer and their characteristics.

Use Case ML category ML methodology Input data Output data Tramning data Ref.
QoT supervised kriging, La-norm  OSNR (historical data) OSNR synthetic [34]
estimation minimization
OSNR/Q-factor BER synthetic [35]. [36]
OSNR/PMD/CIV/SPM blocking proh. synthetic [37]
CBR error vector magnitude, OSNR  Q-factor real [38]
lightpath route, length, number  Q-factor synthetic [39]. [40]
of co-propagating lightpaths
RF lightpath route, length, ME, BER synthetic [41]
traffic volume
regression SNR (historical data) SNR synthetic [42]
NN lightpath route and length, Q-factor synthetic [43]. [44]
number of traversed EDFAs,
degree of destination, used
channel wawelength
k-nearest neighbor, total link kength, span length, BER synthetic [45]
RF, SVM channel launch power, MF and
data rate
NN channel loadings and launch  Q-factor real [46]
power settings
NN source-destination nodes, link  BER real [47]
occupation, MF, path length,
data rate
OPM supervised NN eye diagram and amplitude OSNR/PMD/CD real [48]
histogram param.
NN. SVM asynchronous amplitude his- MF real [49]
togram
NN asyncrhonous constellation di-  OSNR/PMD/CD synthetic [SO}-[53]
agram and amplitude his-
togram param.
Kemel-based ndge eye diagram and phase por- PMD/CD real [54]
regression traits param.
NN Horizontal and Vertical polar- OSNR, MF, symbol rate real [55]
zed /Q samples from ADC
Gaussian Processes monitoring data (OSNR vs A)  Q-factor real [56]
Optical ampli-  supervised CBR power mask param. (NF, GF)  OSNR real [57]. [58]
fiers control
NNs EDFA input/output power EDFA operating point real [59]. [60]
Ridge regression, WDM channel usage post-EDFA power  real [61]
Kemelized Bayesian discrepancy
regr.
unsupervised  evolutional alg. EDFA input/output power EDFA operating point real [62]

F. Musumeci et al., in IEEE
Communications Surveys & Tutorials,
21, no. 2, pp. 1383-1408, 2018.
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e Optical Transmission
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MF unsupervised 6 clustering alg. Stokes space param. MF synthetic [63]
recognition
k-means received symbols MF real (64
supervised NN asynchronous amplitude his- MF synthetic [65]
togram
NN. SVM asynchronous amplitude his- MF real [66]. [67]. [49]
togram
variational Bayesian  Stokes space param. MF real [68]
echn. for GMM
Non-linearity supervised Bayesian  filtering, received symbols OSNR, Symbol error rate  real [31], [32]. [69]
mitigation NNs, EM
ELM received symbols self-phase modulation synthetic [70°
k-nearest neighbors received symbols BER real [71]
Newton-based SVM received symbols Q-factor real [72]
binary SVM received symbols symbol decision bound-  synthetic [73]
ares
NN recetved subcarrier symbols Q-factor synthetic [74
T - GMM post-equalized symbols decoded symbols with im-  real [75]
NL mltlgatlon pairment estimated and/or
mitigated
Clustering received consiellation with  nonlinearity mitigated  real [76]
nonlinearities constellation points
NN sampled received signal se- equalized signal with re-  real [771H]82]
quences duced ISI
unsupervised  Kk-means received constellation density-based spatial  real [83]

constellation clusters and
their optimal centroids

F. Musumeci et al., in IEEE
Communications Surveys & Tutorials,
21, no. 2, pp. 1383-1408, 2018.
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Optical Networking

Traffic Prediction

Failure

fier gain, shelf temperature,
current draw, mternal optical

Use Case ML category ML methodology Input data Output data Training data Ref.
Traffic prediction  supervised ARIMA historical real-time traffic ma-  predicted traffic matrix synthetic [84]. [85]
and virtual topol- trices
ogy (reesign
NN historical end-to-end  predicted end-to-end traf-  synthetic [86]. [87]
max imum bit-rate traffic fic
Reinforcement leaming previous solutions of a multi- updated VT synthetic [88]. [89]
objective GA for VTD
Recurrent NN historical aggregated traffic at  predicted BBU pool traffic  real [90]
different BBU pools
NN historical traffic in intra-DC  predicted intra-DC traffic real [91]
network
unsupervised  NME, clustering CDR. Pol matrix similarity patterns in base  real [92]
station traffic
Faillure manage- supervised Bayesian Inference BER, received power list of failures for all light-  real [93]
paths
Bayesian Inference, EM  FTTH network dataset with  complete dataset real [94], [95]
missing data
Kriging previously established light- estimate of failure local- real [96]
paths with already available ization at link level for all
failure localization and moni-  lightpaths
toring data
(1) LUCIDA: Regres- (1) LUCIDA: historic BER (1) LUCIDA: failure clas- real [97]
ston and classification and received power, notifica-  sification
(2) BANDO: Anomaly tions from BANDO (2) BANDO: anomalies in
Management Detection (2) BANDO: maximum BER, BER
threshold BER at set-up, mon-
itored BER
Regression,  decision  BER, frequency-power pairs localized set of failures real [98]
tree, SVM
SVM, RF, NN BER set of failures real [99]
regression and NN optical power levels, ampli- detected faults real [100]

F. Musumeci et al., in IEEE
Communications Surveys & Tutorials,
21, no. 2, pp. 1383-1408, 2018.
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Digital Twins in Optical Networks:
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What is a Network Digital Twin?

» But first, what is a digital twin? It is much more than a digital model or a simulator ...

DIGITAL MODEL DIGITAL SHADOW DIGITAL TWIN

VIRTUAL OBJECT Virtual-to-Physical

Physical-to-Virtual
connection PHYSICAL OBJECT connection PHYSICAL OBJECT

M. Bertoni, A. Bertoni, (2022), Designing solutions with the product-service systems digital twin: What is now and what is next?, Computers in Industry, Volume
138, https://doi.org/10.1016/j.compind.2022.103629.

W. Kritzinger, M. Karner, G. Traar, J. Henjes, W. Sihn, Digital Twin in manufacturing: A categorical literature review and classification,IFAC-PapersOnLine, Volume 51,
Issue 11, 2018, Pages 1016-1022.
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What is a Network Digital Twin?
» Network Digital Twin (ou Digital Twin Network)

Analyze, Diagnose

| NETWORK DIGITAL TWIN |
hmmmmmm e mm e +
fmmmmm e m - + e +
| | Simulate, Control | |
| Models | | Data |
| e ra— |
Fmmmmmmmm——— - + | | mmmmmmmm— - - +
| Interface |
| |
e +

Figure 1: Key Elements of Digital Twin Network

Digital Twin Network: Concepts and Reference Architecture
draft-zhou-nmrg-digitaltwin-network-concepts-07

Status IESG evaluation record IESG writeups Email expansions History

Versions:
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-
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| App 1 | | App 2 | — | App n | Application
o ————- + e + e 4

------------- B e

| Capability Exposure|intent input
| |
--------------------------------- Ve mmmmmmm e m e mm e — -y
Network Digital Twin
$m—————— . e + e v
| | Service Mapping Models | |
B e
Data +---> |Functional Models | +---> Digital
Repo- ----- - P - + Twin
sitory | | Entity
=i - Vi i i - Mgmt
<---+ | Basic Models <---+
e —————————— -
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-------- A------—---_----------------------_.....-....-.......-.-..-..+
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Figure 2: Reference Architecture of Digital Twin Network
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What is a Network Digital Twin?

IEEE/IFIP Network Operations and Management Sympesium

s RN IEEE Q) o g
29-29 hpet 2022 ¢/ Budapast, Hungary omsoc gmp 0|EEE

Network and Sesvica Management in the Era of Cloudification, -

Softwarization and Artificial Intellizence

HOME ~ ABOUT | COMMITTEES | AUTHORS
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WS4 - 1ST INTERNATIONAL WORKSHOP ON TECHNOLOGIES FOR NETWORK TWINS (TNT 2022)

All times listed are in Central European Summer Time (CEST)
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Time - CEST | Duration | Session Chair
Opening and Keynote
09:00 45 min. | Xeynote speaker: Adam Drobot, OpenTechWorks Laurent Clavaglia

Tithe: Network Requirements for Digital Twins and Digital Twin Requirements for Networks

45 min. | Invited talks

Building a digital twin network leveraging model orchestration, Hongwel Yang — China Mobile

15 man. ,
09:45 (remote) Diego Lopez
An Industrial Network Digital Twin for enhanced cyber-security, Andrea Melis ~ Universita di
1 15 man.
l Bologna (remote)
1 i MTV: A Network Emulator for Digital Twins, Will Fantom — Lancaster University (on site)
| 10:30 30 min. Coffee break

75 min. | Technical session 1

28 e Smart DC: An Al and Digital Twin-based Energy-Saving Solution for Data Centers, Ziting Zhang

11:00 (remote) Roberto Minerva
25 man. BSGEMINI: a Digital Twin Network for 5G and Beyond, Alberto Mozo Velasco (remote)

25 min, Digital Twin for the Optical Network: Key Technologies and Enabled Automation Applications,
Chris Janz (on site)

12:30 60 min. Lunich break

75min. | Technical session 2

25min. | Stopping the Data Flood: Post-Shannon Traffic Reduction in Digital-Twins Applications, Caspar
13:30 . _|_von Lengerke fon site)

B e el Dl NN WL Laurent Ciavaglia
25 min Accelerating Deep Reinforcement Learning for Digital Twin Network Optimization with
Evolutionary Strategies, Carlos GOemes Palau (on site)

25min. | A Chaos Engineering Approach for Improving the Resiliency of IT Services Configurations,

Filippo Poltronieri (on site)
15:00 30 min. Coffee break

Panal on Hot Tonics in Netwaork Digital Twins

https://noms2022.ieee-noms.org/ws4-1st-international-workshop-technologies-network-twins-tnt-2022
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https://noms2022.ieee-noms.org/ws4-1st-international-workshop-technologies-network-twins-tnt-2022

What is a Network Digital Twin?
- Digital Twins in Optical Networks

OPTICAL COMMUNICATIONS AND NETWORKS

The Role of Digital Twin in Optical IEEE Comm. Magazine 2021
Communication: Fault Management, Hardware
Configuration, and Transmission Simulation

Danshi Wang, Zhiguo Zhang, Min Zhang, Meixia Fu, Jin Li, Shanyong Cai, Chunyu Zhang, and Xue Chen

Architecture to Deploy and Operate a
Digital Twin Optical Network

0FC 2022

R. Vilalta', R. Casellas', L1 Gifre! R. Muiioz', R. Martinez',
A. Pastor” , D. Lépez’, J.P. Ferniandez-Palacios’

L Centre Tecnologic de Telecomunicacions de Catalunya (CTTC/CERCA), Castelldefels (Barcelona), Spain
2 Telefonica I+D, Madrid, Spain
e-mail: ricard.vilalta@cttc.es
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NDT in Optical Networks

| mmm———— + fmm————- + fmm————- + Network |
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Network Digital Twin
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Service Mapping Models
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Repo- +----- e B + Twin
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<---+ | Basic Models <---+
e ——————— -
F-—m————- . o e e e e + F--m——— - s
I B e e e - +
| |
| data collection | control
e e Veommmmmmmm e m e m—m o +

| Physical Network

Figure 2: Reference Architecture of Digital Twin Network
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NDT in Optical Networks

Parameter Real Telemetry Virtual Telemetry
EDFA_1_Pout 10 dBm 10.5 dBm
EDFA_1_Pin -15 dBm -14.1 dBm

TRX_2_OSNR 15 dB 17 dB
TRX_3_OSNR 13 dB 13 dB
TRX_5_OSNR 16 dB 14 dB
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Issues and Challenges

* How to address inconsistencies between the virtual and the real network?
o Some parameters can be read directly from the real network (e.g. fiber attenuation)
o Other parameters must be estimated from the model: e.g. OSNR

* NDT models should be optimized to yield measured parameters

» (GN-based models should yield considerable deviations (Qol estimation discussion!)
» ML-based models
» Numerically-optimized models (e.g. gradient descent algorithm)
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Issues and Challenges

NDT Time Series DB

» How often to update the virtual network? 51 >

Virtual network

. N
Twin photographs
Twin
photograph P1 P2  P3 P4 P5 P6 || P7 P8 P9
. ! - - | T — T | T - -
; ; ; ; ; ; ; ; ; Photograph triggered by:
SNR i i i i i i i i i V| * Physical topology changes

Pout | - - | - | - | ' ' *Li
. . g . . /N, . . . . ghtpath setup/teardown
Pin _/\M/\f\/»\ J/\ /\/\:f/-f\/ WA\ WA "M.J\PW»\E/-/\/W\/\N/\/W\J/\/\/ \/Wv\ﬁ * Anomaly detection (diff based)
SDN database ! : i | | | i i |

Physical network

4‘.\' 9 1
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Issues and Challenges
Other issues (IETF)

o large-scale challenge (scalability, storage, data compression)
o Interoperability

o Data modelling

o Real-time requirements

o decurity risks

UUUUUUU



Case Study: ML-based Soft-Failure Localization

4514 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 40, NO. 14, JULY 15, 2022

Demonstration of ML-Assisted Soft-Failure
Localization Based on Network Digital Twins

Kayol S. Mayer@, Rossano P. Pinto, Jonathan A. Soares, Dalton S. Arantes, Christian E. Rothenberg 0}
Vinicius Cavalcante, Leonardo L. Santos, Filipe D. Moraes, and Darli A. A. Mello®
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Case Study: ML-based Soft-Failure Localization
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Case Study: ML-based Soft-Failure Localization
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Case Study: ML-based Soft-Failure Localization

- Soft-failure localization results

TABLE 1
SINGLE-FAILURE LOCALIZATION RESULTS
Component Dgpyp |[dB]  Trgp [s] | Component Dpyp [dB]  Tgp [s] | Component Drpy [dB]  Tgp [s]
Booster 1 2 (.98 185 PreAmp 2 3 1.92 80 Fiber 2 4 2.00 4
Booster_2 1 1.95 65 PreAmp_3 2 199 17 Fiber 4 2 1.42 S
Booster_2 3 213 635 PreAmp_2 4 1.46 107 Xponder_1_2 1.46 8
Booster 3 2 ). 72 4 PreAmp_4 2 191 272 Xponder_2_1 1.48 5
Booster 2 4 2.54 4 Fiber 1 2 3.73 5 Xponder_1_3 1.97 4
Booster 4 2 1.49 15 Fiber 2 1 B 127 Xponder_3_1 151 54
PreAmp_1_2 1.49 4 Fiber 2 3 .89 5 Xponder_1_4 1.48 6
PreAmp_2_1 2.90 5 Fiber 3 2 2.9] 4 Xponder_4 1 1.50 122

D g1, and T'p, are the degradation and time to failure localization, respectively.
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Case Study: ML-based Soft-Failure Localization
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Conclusions

» DIs are gaining several fields of knowledge, and they should also become widespread in optical
transmission systems

» NDTs should be of paramount importance for QoI estimation and soft-failure localization

» There are open challenges involving the NDT update behaviour and the consistency between
the virtual and the physical network (related with QoI estimation!). Classic numerical
optimization and ML-based techniques may be used

« We demonstrated an ML-based soft-failure estimation method based on synthetic failures
generated in the virtual network
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From Pixels to Packets:

In-Network AR/CG Traffic Classification Entirely

Deployed in the Programmable Data Plane:
Unlocking RTP Features and L4S Integration

Alireza Shirmarz =, Mateus N. Bragatto =, Fibio Luciano Verdi =,
Suneet Kumar Singh @Nt~U, Christian Rothenberg @, Gyanesh Patra 2, Gergely Pongricz 2

p

ederal University of Sao Carlos (UFSCar), Sorocaba, SP, Brazil,

@NTNU Norwegian University of Science and Technology (NTNU), Norway,
@ Universidade Estadual de Campin:
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Abstract—This paper presents an in-network machine learn-
ing (ML) approach for classifying Augmented Reality (AR)
and Cloud Gaming (CG) traffic using programmable hardware.
Random Forest (RF) models are deployed in a P4 data plane
capable of processing Real-time Transport Protocol (RTP) traffic
featnres like Frame Size (FS) and Inter-Frame Interval (IFI)

Traffic Classification of

Augmented Reality and Cloud Gaming

Alireza Shirmarz, Fibio Luciano Verdi
Department of Computer of Science
Federal University of Sao Carlos (UFSCar)
Sorocaba, Brazil
ashirmarz @ufscar.br, verdi @ufscar.br

Abstract—Augmented Reality (AR) real-time interaction be-
tween users and digital overlays in the real world demands low
latency to ensure seamless experiences. To address computational
and battery constraints, AR devices often offload processing-
intensive tasks to edge servers, enhancing performance and
user experience. With the increasing adoption and complexity
of AR applications, especially in remote rendering, accurately
classifying AR network traffic becomes essential for effective
resource allocation. This paper explores two methods based
on Decision Tree (DT) and Random Forest (RF) to classify
network traffic among AR, Cloud Gaming (CG), and other
categories. We rigorously analyze specific features to precisely
identify AR and CG traffic. Our models demonstrate robust
performance, achieving accuracy rates ranging from 88.40% to
94.87% against pre-existing datasets. Moreover, we contribute
with a novel dataset encompassing AR and CG traffic, curated
specifically for this study and made publicly available to facilitate
reproducible research in AR network traffic classification.

Index Terms—Augmented Reality, Traffic Classification, ML.

I. INTRODUCTION

Extended Reality (XR), which includes Virtual Real-
ity (VR), Augmented Reality (AR), and Mixed Reality (MR),
aims to enhance human interaction with digital and real-
world environments. VR immerses users in entirely digital
landscapes, whereas AR supplements the real world with
digital overlays, and MR facilitates interaction between real
and virtual elements [T} 2]). The application of XR technologies
spans diverse fields, e.g., gaming, entertainment, healthcare,
and education, with projections indicating that the mobile AR
market will expand to four times by 2026 [3). HMDs (Head
Mounted Displays) are pivotal in XR, offering visual, audio,
and sensory feedback. VR headsets deliver a completely
immersive experience by isolating the user from the physical
world, while AR glasses enhance real-world interactions with
digital information. Current AR glasses are available in two
categories: phone-powered, reliant on smartphon com-
putational tasks, and stand-alone, which are self-sufficient in
computing [#-8]). Advancements in offloading AR processing
and remote (game) rendering to edge servers are aimed at man-
aging the computational demands by leveraging the servers’
superior processing capabilities and leveraging advances in
network connectivity such as 5G [9HI7]. This strategic shift
enhances Quality of Service (QoS) and Experience (QoE)

Suneet Kumar Singh, Christian Esteve Rothenberg

School of Electrical and Computer Engineering
Universidade Estadual de Campinas (Unicamp)
Campinas, Brazil

ssingh@dca.fee.unicamp.br, chesteve @dca.fee.unicamp.br

through efficient edge cloud processing for XR and Cloud
Gaming (CG) applications.

Classifying network traffic for effective resource allocation
remains imperative to accommodate the varying demands of
different applications [I8] . However, challenges behind
traffic classification are compounded by encryption and the use
of dynamic ports, making application identification through
network traffic analysis more complex. Current strategies
for traffic classification include port-based, payload-based,
and machine learning (ML)-based methods. By handling the
hazards of payload encryption and dynamic port allocation,
ML approaches are gaining prominence in accurately clas-
sifying network traffic at high performance and affordable
costs across various hardware platforms, including GPUs,
SmartNICs equipped with CPUs, and FPGAs (18] 20].

In this paper, we present a solution for traffic classification
of AR, CG, and other applications (e.g.. web-based network
traffic) using flow-based features in DT and RF model
Compared with previous work on CG traffic classification
as far as we know, this is the first work that jointly classifies
AR and CG. The contributions of this paper are:

We propose an algorithm to classify the AR and CG from
other applications based on the network traffic behavior
in Uplink (UL) which is the data transmitted from the
User Equipment (UE) (e.g.. AR glasses, game controller)
to the edge server, and Downlink (DL) i.e.. the data sent
from the edge server to the UE;

We select the key features for the network traffic classi-
fication by analyzing the different possible combinations
of the features. Hence, the most effective set of features
is exploited to classify the network traffic in AR, CG,
and other applications with high accuracy:

We propose a DT and RF model to classify the network
traffic into three classes: AR, CG, and other applications
based on network flow features. The models are trained,
tested, and improved with real traces of AR and CG
applications;

Finally, we collect AR and CG network traffic to test
and improve the model. All the collected PCAP files
and Jupyter notebooks for reproducibility are publicly
available.
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requirements of AR and CG traffic, network operators must
implement prioritization strategies on the network operators
bottleneck that ensure performance reliability and foster the
AR/CG broader adoption across the Internet.

To operators deliver ultra-low latency and reliable perfor-
mance of such delay-sensitive applications, recent efforts [5],
[91, [14], [22] advocate for a combination of the L4S ar-
chitecture [2] with an automatic classifier for AR and CG
traffic. L4S achieves this through components like Explicit
Congestion Notification (ECN) [15] and dual-queue Active
Queue Management (AQM) [16], which facilitate scalable
congestion control and compatibility with legacy systems,
supporting incremental deployment. The L4S architecture uses
the ECT(1) codepoint in the ECN field of the IP header to
identify packets eligible for specialized treatment [2], [15].
Since the host typically handles ECT(1) marking in L4S, the
are open challenges related to the risk of ECT(1) mismarking
by malicious entities or improper configuration, which can
undermine service guarantees and compromise performance
for high-priority traffic [9], [12], [15].

This paper presents a pioneering implementation of an
RF-based AR/CG trdffic classifier fully integrated into a P4
data plane that outperforms our prior work [19] in terms of
accuracy and robustness. AR and CG traffic are marked with
ECT{(1) to be directed to the L4S queue for higher QoS. DSCP
marking further differentiates AR and CG, enabling tailored
network prioritization and resource allocation by the network
operators. While L4S queuing performance falls outside the
scope of this study, our work focuses on evaluating the
deployed model cl ication accuracy and time overhead
dependent on traffic classification, ECT(1) marking, and DSCP
assignment. Our testbed evaluation demonstrates deployment
feasibility, using VIModel on the P4Pi' and TNA on the
Tofino2 for implementation and performance assessment.

Moreover, our proposed approach incorporates RTP-based

!https://eng.ox.ac.uk/computing/projects/programmable-hardware/p4pi.
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e Objective: Traffic Classification of Augmented Reality (AR) and Cloud Gaming (CG)

e Importance & Necessity:

o AR widespread adoption in retail and industrial applications.
o AR computational offloading to the remote server.

o AR more sensitivity to delay
O

Heterogeneous processing units (e.g. CPU, GPU, DPU, FPGA)

e Approaches & Findings:
o Decision Tree (DT) & Random Forest (RF) models for classification.
o The accuracy between 88.40% and 94.87% for network traffic classification into ‘AR,
‘CG’ and ‘other’ classes.
m ‘Other’ class includes four application types: Video Conference (VC), Video

Streaming (VS), Live Video Streaming (LV), and Browsing.
Collected datasets for AR & CG

o Evaluate & verification the models. Z

O
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Abstract—This paper presents an in-network machine learn-
ing (ML) approach for classifying Augmented Reality (AR)
and Cloud Gaming (CG) traffic using programmable hardware.
Random Forest (RF) models are deployed in a P4 data plane
capable of processing Real-time Transport Protocol (RTP) traffic
features like Frame Size (FS) and Inter-Frame Interval (IFI)
for efficient classification. The classifier marks AR and CG
traffic with Explicit Congestion Notification (ECN) codepoints to
integrate with the Low Latency, Low Loss, Scalable Throughput
(L4S) features of the programmable switch. The RF model
prioritizes AR/CG traffic using Differentiated Services Code-
Point (DSCP) assignments and modular ECN marking. The
classification performance is evaluated using accuracy, precision,
recall, and F1-score, while time overhead is assessed based on
nodal processing time incurred during deployment by replaying
AR/CG traffic. The P4 implementations for V1Model and Tofino
Native Architecture (TNA) are all publicly available.

Index Terms—AR/CG traffic classification, Machine Learning,
P4, Deployment, L4S

I. INTRODUCTION

The rapid growth of delay-sensitive application traffic,
driven by advancements in real-time communication and in-
teractive applications, poses significant challenges for network
management. Applications such as AR and CG are exception-
ally critical due to their stringent requirements for ultra-low
latency and negligible packet loss [6], [14]. These competitive
and real-time interactive services demand far greater sensitivity
than other delay-sensitive traffic types [19].

AR and CG traffic, characterized by their real-time and com-
petitive interactive requirements, necessitates stringent prioriti-
zation to mitigate the adverse effects of end-to-end latency. For
AR, latency or packet loss can severely degrade the user expe-
rience, causing issues like motion sickness [10], [19], while for
CG, even minor latency can drastically affect gameplay quality
and competitiveness, reducing user satisfaction and Quality of
Experience (QoE) [5], [6], [19]. Network operators effectively
manage queuing delays, making their involvement essential for
ensuring these applications meet their stringent performance
requirements. To address the stringent latency and bandwidth

requirements of AR and CG traffic, network operators must
implement prioritization strategies on the network operators
bottleneck that ensure performance reliability and foster the
AR/CG broader adoption across the Internet.

To operators deliver ultra-low latency and reliable perfor-
mance of such delay-sensitive applications, recent efforts [5],
[9], [14], [22] advocate for a combination of the L4S ar-
chitecture [2] with an automatic classifier for AR and CG
traffic. L4S achieves this through components like Explicit
Congestion Notification (ECN) [15] and dual-queue Active
Queue Management (AQM) [16], which facilitate scalable
congestion control and compatibility with legacy systems,
supporting incremental deployment. The L4S architecture uses
the ECT(1) codepoint in the ECN field of the IP header to
identify packets eligible for specialized treatment [2], [15].
Since the host typically handles ECT(1) marking in L4S, the
are open challenges related to the risk of ECT(1) mismarking
by malicious entities or improper configuration, which can
undermine service guarantees and compromise performance
for high-priority traffic [9], [12], [15].

This paper presents a pioneering implementation of an
RF-based AR/CG traffic classifier fully integrated into a P4
data plane that outperforms our prior work [19] in terms of
accuracy and robustness. AR and CG traffic are marked with
ECT(1) to be directed to the L4S queue for higher QoS. DSCP
marking further differentiates AR and CG, enabling tailored
network prioritization and resource allocation by the network
operators. While L4S queuing performance falls outside the
scope of this study, our work focuses on evaluating the
deployed model classification accuracy and time overhead
dependent on traffic classification, ECT(1) marking, and DSCP
assignment. Our testbed evaluation demonstrates deployment
feasibility, using VIModel on the P4Pi' and TNA on the
Tofino2 for implementation and performance assessment.

Moreover, our proposed approach incorporates RTP-based

'https://eng.ox.ac.uk/computing/projects/programmable-hardware/p4pi.
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Conclusiones

(6

e ML/AI are here to stay and will keep evolving and impacting networking (operations
/ OPEX through automation, new revenue streams, etc.)
¢ “Data is the new oil”
o Like oil, data is valuable, but if unrefined it cannot really be used
e Recommendations:
o Start collecting data (the 4 Vs challenge! Veracity, Velocity, Volume, Variety)
o ldentify and Rank your main “headaches” (e.g. cost, risk, dissatisfaction, etc.)
o Partner with ML/AIl savvy (real-data hungry) Research Groups (e.g. Universities)

o Innovate and take some risks to play out the use case for ML/AI in your network
102
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It’s more about the data set

Actual relevant

Machine learning research oroblems in Industry

m optimizing model moptimizing model
= finding/optimizing data set = finding/optimizing data set

e Most engineering applications use simple ML on domain-specific data sets
e Standardized open dataset for optical networks?
e Customer privacy/ company confidentiality / rarity of failure scenarios

UUUUUUU

Alan Lau
OFC’2020
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Optical Performance Monitoring (OPM) H. Bock, Infinera, OSA PC, 2020

Traffic prediction & Health Score:
Establishing an open ecosystem of tools for data processing, analytics & Al/ML

Alerts

\ Dashboard 9

Server

Controller

Telemetry streaming

Collecting performance data, gRPC gNMI —

Policy REST API

Time Series Database

_— - Data Ingestion

“ gRPC Telemetry Collector

Supervised Machine
Learning(TensorFlow)

Trained Model Policy Catalog

Al/ML Engine

Policy Engine

° b e Aut T
L Stream Data J Process . Compute utomate
* Enhance , « Act
* Predict .
k" Stream ) A\ 30 AI/ML and Policy Driven Networks
| proof of Concept ~ FOT the LSO-Based Architecture
Century Link, Infinera, Telia Company
RN e SDN-based telemetry can provide a “health check” on connections and components
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Quality of Transmission (QoT) Estimation
Why is QoT estimation still inaccurate

UUUUUUU

HUAWEI EUROW RESEARCH CENTER
a3

Y. Pointurier, Huawei, ICTON, 2020

» Inaccurate modeling:

Physics is not well mastered (example: spectral hole burning)

Physics is well mastered but modeling is too slow (example: split step Fourier, coherent Gaussian
noise model)

» Inaccurate parameters:

Components characterized in the lab, but behavior varies from sample to sample (example: EDFA
gain vs. load)

Full lines (OMS) characterized in the lab, but impossible to characterize all lines of a network
Behavior of components/lines change when moved from lab to the field (example: TRX
temperature)

Type of components known but not characterized (example: fiber)

Type of component not known (example: fiber!)

Events not recorded or monitored (example: splice)

£
-/
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Quality of Transmission (QoT) Estimation
QoT Estimation: Labeled Data Gathering

NG
5

UNICAMP

* The networks have different characteristics in terms of
number of nodes, links, fiber types, and fiber span length

Due to the lack of real network data, synthetic data generated for 4 reference networks

H. Bock, Infinera, OSA PC, 2020

* The Gaussian noise (GN) model was used to calculate lightpath QoT for line interfaces operating at:
QPSK (100Gbit/s), 8QAM (150Gbit/s), 16QAM (200Gbit/s), 32QAM (250Gbit/s), 64QAM (300Gbit/s)

* End-of-life performance was considered, i.e. considering fully loaded links
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Quality of Transmission (QoT) Estimation H. Bock, Infinera, OSA PC, 2020

3

Results: Accuracy Considering the Minimum Training Set

e

* ANN for regression is the model with the highest accuracy for all networks
* ANN for classification and logistic regression present second-best results

* For simpler networks ANN for classification obtains the second-best result,
whereas for networks with a more complex fiber mix logistic regression performs better

Accuracy [%] ll
100 Q
§ § Number of training and testing examples in the data sets, and best
08 [ § obtained accuracy for each considered network
\ 8l N
96 § Number of Number of ST
§ § Network paths in paths in AT Y
< 94 |-N-- § training set testing set
i~ N N\
%) \ § GBN 189 20 495 99.44%
g 02 |-HE- s
5 § § TIM 5318 5 671 360 99.71%
< 90 | §
§ § SPARKLE 1161 1 205 575 99.49%
W KNN (Euclidian, K=1) 7 KNN (Cosine, K=10) CORONET 530 526 600 99.90%
36 | 1 KNN (Weighted, K=10) ™ Logistic Regression W SVM (Linear)
B SVM (Quadratic) 1 SVM (Cubic) 1SVM (Gaussian - 1)
84 DSVM (Gaussian - 3) B ANN Classification ANN Regression
GBN TIM SPARKLE CORONET
;" Infl nera Network © 2020 Infinera. All rights reserved.

[10] R. Morais, et al., Machine learning models for estimating quality of transmission in DWDM networks , in IEEE/OSA JOCN, 2018.
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Traffic Prediction

e Traffic predictions for load balancing H. Bock, Infinera, OSA PC, 2020

Results (Confidence Interval with £30)

* Ascan be seen, predictions are made with good accuracy and all major trends are perfectly predicted
* The monitored traffic volume almost always falls into the predicted confidence interval
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Nonlinearity Compensation

Fiber nonlinearity compensation using deep learning

e Digital BackPropagation(DBP)’s sequence of interleaved linear and nonlinear operations

W lo '(W-1o71(...)) can be modeled as a DNN stzgucture

" . g Y4 :
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(3 heoeerennnn S/ A U il o
O O O O O o— | S N\
2 \
O O O © © O— ¥
]O : : : : \ :
. —6 —4 —2 0 2 4 6 8

O O transmit power P [dBm]

Parameters of W and nonlinear function 0 can be learned via BP algorithm
® Learned DBP performs similarly to standard DBP but is computationally simpler

é"’ﬁ C. Hager and H. D. Pfister, "Nonlinear Interference Mitigation via Deep Neural Networks," 2018 Optical Fiber Communications Conference and Exposition Alan Lau 118
oY (OFC), San Diego, CA, 2018, pp. 1-3. OFC’2020
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JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 37, NO. 16, AUGUST 15, 2019

4125

A Tutorial on Machine Learning for Failure
Management 1n Optical Networks

Francesco Musumeci *“, Cristina Rottondi *?, Giorgio Corani, Shahin Shahkarami, Filippo Cugini*“,
and Massimo Tornatore “

(Invited Tutorial)

Algorithm Task Description Ref.
Random Forests Detection BER anomaly detection (33]
Identification equiment failure type identification 34
Artificial Neural Networks Monitoring OSNR monitoring 35]-[37]
Monitoring eye diagram monitoring [38]-[43]
Monitoring phase portrait monitoring 44
Prediction/Identification equipment failure prediction 45], [46]
Detection/Identification BER anomaly detection and 1dentification [33]
Support Vector Machines Prediction equipment failure prediction 47]
Detection BER anomaly detection (33
Localization/Identification  filter failure identification and localization 34
Gaussian Processes Monitoring OSNR monitoring 48
Localization/Identification  link failure identification and localization 49]
Bayesian Networks Localization/Identification  localization and identification of tight filter- 50
ing anc inter-channel interference
Identification failure diagnosis 51]-[54]
Network Kriging Localization link failure localization 2
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Optical Performance Monitoring (OPM)

Optical node Optical node
EDFA

N CCD_D_@_
— X > D'T X
. Optical signal

/ Small fraction

of signal power

tapped I\ \/

. 4 =) 4 Optical power, A . u
L\ | OSNR, CD, PMD. i

OPM PDL, v.vave{epg‘th, (;;M
: nonlinearities Tk
device (SPM. XPM. device
FWM). crosstalk,
interference effects,
symbol rate,
K modulation format /

4

e OPM is a set of measurements performed (@ Tx/Rx or intermediate nodes) on an optical signal
to estimate physical parameters e.g. OSNR, CD etc. of an optical channel

e Reliable/efficient operation of optical networks requires real-time physical links information

e OPMis also becoming a key component to enable impairment-aware SDN

&"’A Alan Lau
oV oFc’2020 140
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Optical Performance Monitoring (OPM)

CD dependence OSNR dependence DGD dependence
20 , ! , , ,
§ 3 - —s—N.OSNR=10dB : 1
—&—u_,OSNR=24dB
o 1 3 12 o a 3 |
« s | —6—H,.OSNR=10dB o §
2 s M ——p OSNR=24dB P
= 10 c ] 4 : < E
S = = r
O O - s
2 5 > > |
e B TR o A T )( e )( )(*- —— *)( o T )( R . R SR . TR . A 1 \’(
—?000 ~500 0 500 1000 -200 ~100 0 100 200 % 5 10 15 20
Accumulated CD (ps/nm) Accumulated CD (ps/nm) DGD (ps)
Amplitude
distributions

e Moments of p, uw, W, , of the he amplitude

histogram can provide information about physical
effects affecting transmission

EN. Khan et al., IEEE Photonics Technology Letters, Jun. 2012.

AWz
4.\'
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..................

Alan Lau
OFC’2020
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Orchestration — OSS / BSS

‘ API, TAPI
Plano de Controle SDN
= = = N
DC NW Slice Aplicagao de | Identificacdo de | Config/ Config PCE J
Controller Telemetria Falha .| Drivers Store OMOs
\_ . d )=

APl, NETCONF, REST / RESTCONF

i %
Opencgonfig Transport NW / Controller — Geréncia Padtec P4 Runtime

‘ Legacy, CLI, REST

P4 Runtime

DC GW / P4 Slices DC GW / P4 Slices

Data Center / Data Center /
Switch Domain OTN / WDM Domain Switch Domain
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Orchestration — OSS / BSS

‘ API, TAPI
Plano de Controle SDN
e _ ’ N
DC NW Slice Aplicacdo de | Identificacdo de Config/ Config PCE J
Controller Telemetria | Falha - | Drivers Store oOMOs
. = " 4
y N APl, NETCONF, REST / RESTCONF

P4 Runtime

NMI
Opencgonfig Transport NW / Controller — Geréncia Padtec P4 Runtime

‘ Legacy, CLI, REST

\
‘!

DC GW / P4 Slices

Data Center /
Switch Domain OTN / WDM Domain Switch Domain

Data Center /
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Failure Management

Per lightpath direct failure identification
e Interesting for detecting of soft degradations with slow evolution
e Helps identifying the physical effects underlying the failure (e.qg. filtering, nonlinearities)

e |n case of hard failures of amplifiers and fibers, several lightpaths are affected, and a correlation algorithm
IS required for failure isolation

[ Orchestration — 0SS / BSS ]

1 API, TAPI
Plano de Controle SDN

- )=
Drivi Store OoONOsS
‘ API, NETCONF, REST / RESTCONF I

Transport NW / Controller — Geréncia Padtec

Estimation of

- Q-Factor

-  SNR

- CD

’ - Filtering

N -  Etc. 124

a¥
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Network Controller

Failure Management
| Recommendation[\s/‘(\ /\ /BQNR Estimation
Th1F.2.pdf OFC 2020 © OSA 2020 ok i Dt 2 ( |

| Analytics (MDA) [ SNR Es:lmatlon\\l[/ QoT tool

Soft-Failure Localization and Device Working
Parameters Estimation in Disaggregated Scenarios

S. Barzegar!, E. Virgillito?, M. Ruiz!, A. Ferrari’, A. Napoli®, V. Curri’, and L. Velasco' = 1
! Optical Communications Group (GCO), Universitat Politécnica de Catalunya (UPC), Barcelona, Spain — 4
? Politecnico di Torino, Turin, Italy ‘Infinera, Munich, Germany " Optical Transport
e-mail: Ivelasco@ac.upc.edu - Network
- _1.
g

® UseS CIUStering Of ||gth paths W|th S|m||ar SNR fig. 1. Overview df-theproposed surveillance architecture
e |If there are outliers, tries to find common
resources among them

e Uses two types of monitors, for lightpaths and - “‘\\ WWW I I 7\
g’ | ‘—_’I : : " osse |

246 [ 0.668

for devices
® Uses GNPy planning as a reference of the SNR 5

e The accuracy of the algorithms is not o =wmel /o R - (-

(a) NF gradual j (b) P-max periodical _ (c) P-max random j (d) A/D WSS gradual

S11 16 | 16 30
: A ! I !
[ ] [ ] 'r.:
statlstlcally evaluated =7 B ! =
u - - |- -
7 12 + 12 | 20
5 1 | | H 1 | 1 10 1 I} 1 H 1 H H | 1 10 H 1 | H | H 1 ! 1 15

1 1 1 1 1 I 1 1 1 1 ! 1 1 1 1 1 1
0 0.2 04 06 0.8 1 0 0.2 04 06 0.8 1 0 0.2 04 0.6 0.8 1| 0 0.2 04 06 0.8 1
Time

Fig. 2. Evolution of monitored lighpath SNR with time and estimation of device working parameters.

NG
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Failure Management

Per device direct failure identification

e Monitors boards and devices (e.g. lasers) —_—

‘ API, TAPI

Plano de Controle SDN

Aplicagdo de Identificacdo de Config/ Config J
Telemetria Falha Drivers | [ S50 oNos

t API, NETCONF, REST / RESTCONF
Transport NW / Controller — Geréncia Padtec P4 Runtime

‘ Legacy, CLI, REST

e \Works with time-series

DC GW / P4 Slices

e Ignores the network-wide effect of the failure

- gbservations

omain

A
S 126
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Failure Management

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 36, NO. 7, APRIL 1, 2018

Cognitive Assurance Architecture tor Optical
Network Fault Management

Danish Rafique —, Thomas Szyrkowiec —, Helmut GrieBer, Achim Autenrieth, and Jorg-Peter Elbers

e Detects different types of failures (ramp, single
event, small variations)

e Pre-analysis based on extreme studentized
deviate tests

e Assurance based on a neural network with a
7/-input layer

e Monitors different equipments individually

e Does not perform network-wide evaluation

A
S

UNICAMP

\ /M= f(IW;;*t+b,)
0 = f(OW,; * M + by)

Input Lavyer Hidden Layer Output Laver

Fig. 6. Neural network architecture. 1 inputs, JW; ; are the input weights,
OW, are the output weights, b are the bias values, and [ is the activation
function,
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Cognitive Assurance Architecture for Optical

Network Fault Management

Danish Rafique © , Thomas Szyrkowiec © , Helmut GrieBler, Achim Autenrieth, and Jorg-Peter Elbers ©

Received Optical Power [dBm]
normalized to -1dBm

Received Optical Power [dBm]
normalized to -1dBm

Condition based i
Reactive Identification

Undetected below set point

Single alarm level is used due to data

normalization (for better visualization).

In practice several levels are required
to be defined and maintained

e w | @95 L?Wz

Sample A
(Label I)

Alarm level WJ

4

Sample B Sample C
(Label III) (Label 1I)

Traversed Time [12 hour bins]

Data-driven )
R Proactive Identification

I1 IT &IV
Undetected Undetected

) =

Sample D
(Label II and 1V)

®

II
Undetected

¥

Sample B Sampl C
(Label IIT) (Label IT)

Traversed Time [12 hour bins]

Sample A
(Label I)

Sample D
(Label IT and 1V)

1443

TABLE 1
FAULT TYPES TYPICALLY ENCOUNTERED IN COMMERCIAL OPTICAL
NETWORKING SYSTEMS

Fault Label Description

Point abnormalities due to random flash
events and may lead to abrupt device
damage

Local abnormalities indicating potential
flaws with potential long-term impact on
service performance

Steady abnormalities due to preceding
system configuration changes, and may
lead to damage and/or consistent
performance loss

Ramp abnormalities representing gradual
system and/or service distortion
possibilities
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Indicator Name Units

Fail M t
Input Optical Power (IOP) dBm
Research Article Vol. 25, No. 16 | 7 Aug 2017 | OPTICS EXPRESS 18553 Laser Bias Current (LBC) 1}}?

Laser Temperature Offset (LTO)

Optics EXPRESS b Output Optical Power (OOP) dBm
— S N, SR Environmental Temperature (ET) °G
Unusable Time S
Failure prediction using machine learning and
time series in optical network
ZHILONG WANG,! MIN ZHANG,!" DANSHI WANG,! CHUANG SonNG,! MIN
Liu," Jin Li," Lial Lou,’ AND ZHuO Liu? e T = 7
| e . ! . ' . . . I v

IState Key Laboratory of Information Photonics and Optical Communications, Beijing University of Time $In icator lndl"dwr"iln icator3 |Indicator4/In |Ldlm5$ State J

-9.08 1.20 35.1 17.9 -9.06 == Normal |

Posts and Telecommunications, Beijing 100876, China
2China Mobile Communications Corporation, Beijing 100033, China
‘mzhang@bupt.edu.cn

902 123 359 182  -9.00—=Fail
-8.99 1.11] 362 17.7| -8.98}=—=Fail
-8.94)  1.09| 363 174  -8.95=— Normal
-9.01 1.15/ 362 17.3| -8.99<—s Normal

Predict l(we use DES)

e Monitors boards of China Telecom to predict failures in
the next day

- %

892 118 360  172]  -9.02}—peFail
: : : » SVM Model T
o USGS SVM+T|me series proceSS”']g +kernel function, punishment factor

e Identifies the parameters (laser bias, laser temperature,
environmental temperature) most related to the failures

e Achieves high prediction levels

Y
S 129
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Research Article Vol. 25, No. 16 | 7 Aug 2017 | OPTICS EXPRESS 18553

Optics EXPRESS

Failure prediction using machine learning and
time series in optical network

ZHILONG WANG,! MIN ZHANG,!" DANSHI WANG,! CHUANG SonNG,! MIN

Liu," JiN Li,* Lial Lou, AND ZHuO Liu?

IState Key Laboratory of Information Photonics and Optical Communications, Beijing University of

Posts and Telecommunications, Beijing 100876, China
2China Mobile Communications Corporation, Beijing 100033, China
‘mzhang@bupt.edu.cn

the next day

Monitors boards of China Telecom to predict failures in

Uses SVM+Time series processing

|dentifies the parameters (laser bias, laser temperature,
environmental temperature) most related to the failures

Achieves high prediction levels

Indicator Name Units
Input Optical Power (I0OP) dBm

Laser Bias Current (LBC) mA

Laser Temperature Offset (LTO) &
Output Optical Power (OOP) dBm

Environmental Temperature (ET) °C

Unusable Time S
100%
90% -

-

30% -

70%-

-

60% -

Relation

50% -

40% -
10P LBC LTO OO0P ET
Indicators
2200 96%
/.
A —
2000 4 /-”“""' 4 94%
o
4 |
3] -/. : o
& 1800 ——— A 1929% 2
E | B B | | S
= : 8
21600 - . . 4 90% S
SS) ~ Total failure §
= 1400 - B Successful prediction of failure 4 88% £
— —u— Prediction accuracy &
} <
1200- I I s6%
1000 - r T . 84%
5 10 15 20 25 30 35

Number of days used on training
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Failure Management

Network-wide failure identification (our
approach)

e |dentifies and isolates failures based on
telemetry carried out over the whole
network

e Currently, works with the instantaneous
network status

e Identifies problems in current status
compared to a training status

e Currently, we are evaluating the capacity
of generalization of the algorithm with
respect to different types/levels of
failures

N
“aY

UNICAMP

[ Orchestration — 0SS / BSS ]

I API, TAPI
Plano de Controle SDN
DC NW Slice Aplicagdo de Identificagdo de Conflg/ Config PCE
Controller Telemetria Falha Drwers Store D (—\ -

t AP|l, NETCONF, REST/ RESTCONF
gNMI
P4 Runtime OpenConfig Transport NW / Controller — Geréncia Padtec P4 Runtime

egacy,CLI, REST

DC GW / P4 Slices C GW / P4 Slices

6

Data Center / Data Center /
Switch Domain OTN / WDM Domain Switch Domain
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Load Simulator

Components:
Transceivers;
Fibers;
EDFA amplifiers;
ROADMs:
e Splitters;
e \WSSs;
e Adds & Drops;
e OCMs.
Algorithms:
Python
NetworkX - Network model;
Dijkstra - Routing;
First-fit - Spectrum allocation.

UUUUUUU

WSS
a, =6 dB

OCM
launch power = -1 dBm

[ =80 km
o, = 0.2 dB/km

Splitter
a,=2dB - (1/N),,

Booster Aln-llilflie Pre-Amplifier
Amplifier mpiners _
G =18 dB G=16dB G-l16dB

noise figure = 6 dB

noise figure = 6 dB noise figure = 6 dB

Loopback

Drop
a,=6dB

Transceiver power = -1dBm 132



Load Simulator

2136 Components:

N
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580 Unidirectional fiber spam; o
624 Amplifiers; o
42 OCMs;

72 \WSSs;

44 Splitters;

772 Transcelvers;

3

Requested services:
1000 demands;
386 accepted,;

(12

@.:

NSFNet

National Science
Foundation Network
USA

Source
Seattle (WA)
Seattle (WA)
Seattle (WA)
Palo Alto (CA)
Palo Alto (CA)

San Diego (CA)
Salt Lake City (UT)
Salt Lake City (UT)

Boulder (CO)
Boulder (CO)
Lincoln (NE)

Champaing (IL)

Houston (TX)
Houston (TX)
Atlanta (GA)
Pittsburg (PA)
Pittsburg (PA)

College Pk (MD)
College Pk (MD)

Ann Arbour (Ml
Ann Arbour (Ml

Links

Destination
Palo Alto (CA)
San Diego (CA)
Champaing (IL)

Salt Lake City (UT)

San Diego (CA)
Houston (TX)
Boulder (CO)

Ann Arbour (Ml)
Lincoln (NE)
Houston (TX)

Champaing (IL)
Pittsburg (PA)
Atlanta (GA)

College Pk (MD)
Pittsburg (PA)

Ithaca (NY)
Princeton (NJ)
Ithaca (NY)
Princeton (NJ)
Ithaca (NY)
Princeton (NJ)

1100
1600
2800
1000
600
2000
600
2400
800
1100
700
700
1200
2000
900
500
500
500
300
800
1000

Distance (km)
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Load Simulator
OSNR x Distance x n° ROADMs

30
25 - o .
g
@
= ® Sgoets
iy &
% Ss .0.':'..:.9.‘ oy
< 157 ¢ 2Roadms # - a“”’.‘
N ®
® ® 3 Roadms
104+ @ 4 Roadms
® 5 Roadms
. ® 6 Roadms
/7 Roadms
® 8 Roadms
O | | | |
0 1000 2000 3000 4000 5000

N Distance (km) 134
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Load Simulator

Monitorable parameters

Component Monitored Equipment Total monitored
parameters parameters

Transceivers Pin 3 772 2316

Pout

OSNR
OCMs Pout/Channel 96 42 4032
Amplifiers Pin 2 624 12438

Pout

7596

i 135
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Fault Simulator

Device faults table generated in the simulation

Component Fault Quantity
Transceivers Pout=0W 772
Amplifiers Gain=0dB 624
Fibers Pout=0W 582
TOTAL 1978

\|/
NS 136
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Load and Fault Simulator

Output files

trx_telemetry.csv
amp_telemetry.csv
ocm_telemetry.csv

Telemetry files

noise_power_out.csv
NOISE_pPOWeEr_in.csv
signal_power_ocut.csv
signal_power_in.csv

Auxiliary files

frequency_slots_per_fiber.csv
blocked_lightpaths.csv
accepted_lightpaths.csv
frequency_slots_per_lightpath.csv
lightpaths.csv

Network files

output_data.csv
input_data.csv

W,
¥

UNICAMP
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Load and Fault Simulator
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ML - Input data

OSNR Trx 14 1 OSNR Trx 13 1 OSNR Trx 13 2 OSNR Trx 2 1 ...

Powerln Amp 13 9 9

Powerln Amp 13 9 10

Powerln Amp 13 9 11

Powerln Amp 13 9 12

0 24,037 24,037 13,954 13,940 -1,857 -1,857 -1,857 -1,857
1 24,037 -inf 13,954 13,940 -1,857 -1,857 -1,857 -1,857
2 -inf 24,037 13,954 13,940 -1,857 -1,857 -1,857 -1,857
3 24,037 24,037 13,954 -inf -1,857 -1,857 -1,857 -1,857
4 24,037 24,037 -inf 13,940 -1,857 -1,857 -1,857 -1,857
1975 24,037 24,037 13,954 13,940 -inf -inf -inf -inf
1976 24,037 24,037 13,954 13,940 -1,857 -inf -inf -inf
1977 24,037 24,037 13,954 13,940 -1,857 -1,857 -inf -inf
1978 24,037 24,037 13,954 13,940 -1,857 -1,857 -1,857 -inf
ML - Output data
Trx 14 1 Trx 13 1 Trx 13 2 Trx 2 1 ... Fiber Amp 13 9 9 Fiber Amp 13 9 10 Fiber Amp 13 9 11 Fiber Amp 13 9 12

0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0

3 0 0 1 0 0 0 0 0

4 0 0 0 1 0 0 0 0

1975 0 0 0 0 1 0 0 0

1976 0 0 0 0 0 1 0 0

1977 0 0 0 0 0 0 1 0

1978 0 0 0 0 0 0 0 1
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Neural Networks

e Nonlinear filters;
e Universal approximators of any continuous function on compact (closed and
bounded) subsets of n-dimensional Euclidian space.

Artificial neuron Artificial neural network

- Input layer Hidden layers Output layer

weights ' h h. h ' 0
Inputs : : $ h ;
X :) - AN/ |
| sctvatior o, @7 N W\

% ._)@ net input \‘0" \"" © i""‘ . Output» 1
2 ne t] _ ¢ B/ Input 2 ‘ 4".‘( )“%( )“%( ‘(
activation \ AVNTAY R VAN TA
& ._)@ transfer ‘ ‘v .‘ .

NN TSA
; ; function ej - / "\ /‘ 2 Outpui n
"'—)@ threshold C ./\ ‘ /\.
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Normalization

e Does not change the type of distribution;

: | | Ll
=ak b )= \Yab/

e |Improves the numerical stablility of the model;

e May speed up the training process;
e [arge input values saturate activation functions (e.g., sigmoid and RelLu).

Z-score normalization

p, =0

UUUUUUU
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Nonlinear Activation Functions

e \Without a nonlinear activation function in the artificial neural network, no matter how
many layers it had, it would behave just like a linear single-layer perceptron;

e Allow the model to create complex mappings between the network’s inputs and
outputs.

Softmax

net .

()- =

et
> net,

V

s 3 141
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Optimizers
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Are algorithms or methods used to change the attributes of neural networks such as
weights, learning rate, and momentum in order to reduce losses;

Adam (Adaptive Moment Estimation):

Uses estimations of first and second moments

of gradient to adapt the learning rate for each weight

of the neural network. Bancert

VI S
'-‘.

7" Follow the A
- gradient

oscillating... 3
- whatdoldo? )

Adamax:
Based on Adam, Adamax replaces the second-order  Simee:
moment with the infinite order moment.
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Loss Functions

e Are functions that map an event or values of one or more variables onto a real
number intuitively representing some "cost” associated with the event;

Regression loss functions: continuous values (e.g., MSE, MAE);
Classification loss functions: finite categorical values (e.g., cross-entropy,
categorical cross-entropy);

N
Cross-entropy: CFE = —Z d,log(o,)

n=|\

N
Categorical cross-entropy: ('(CE = —Z d log

n=1 k Z e(‘)!'

2 143
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Accuracy Metrics

e Accuracy is a metric for evaluating classification models. Basically, accuracy is the
fraction of predictions our model got right.

Categorical accuracy: checks to see if the index of the maximal true value is equal
to the index of the maximal predicted value.

s 3 144
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ML module

Graphical representation of the Neural
Neural Network Parameters

Network
Input layer Hidden layers Output layer s B
7596 monitorable | Configurable. In 1978 equipment
parameters of the @ this case, one that may fail on
network. layer with 1000 the network.
neurons. i

€

Normalization of the input using “Zscore”.
Probabilistic output with “Softmax”.

Training optimization with “Adamax’. Input layer |, Output layer
Loss metric “categorical crossentropy’
Accuracy metric “categorical _accuracy’.

Hidden layers

e 145
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ML module

Results

Model: "sequential”

Layer (type) Output Shape Param #

dense (Dense) (None,1000) 7597000
dropout (Dropout) (None, 1000) 0

dense_ 1 (Dense) (None, 1978) 1979978

Total params: 9,576,978
Trainable params: 9,576,978
Non-trainable params: O

Y/
S 146
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ML module

Results

Training Epochs

Epoch 245/250

1978/1978 [==============================] - 35 68ms/step - loss
Epoch 246/250
1978/1978 [==============================] - 35 68ms/step - loss
Epoch 247/250
1978/1978 [==============================] - 35 67/ms/step - loss
Epoch 248/250
1978/1978 [==============================] - 35 65ms/step - loss
Epoch 249/250
1978/1978 [==============================] - 35 65ms/step - loss
Epoch 250/250
1978/1978 [==============================] - 35 69ms/step - loss

ANN test accuracy: 99.95%

Total training time ~7.5 min

svz.
a¥Y

UNICAMP

: 0.0175 - categorical_accuracy: 0.9995
: 0.0172 - categorical_accuracy: 0.9995
: 0.0171 - categorical_accuracy: 0.9995
: 0.0171 - categorical_accuracy: 0.9995
: 0.0168 - categorical_accuracy: 0.9995

: 0.0161 - categorical_accuracy: 0.9995

Training model accuracy

1.0

accuracy

<
1S
|

0.2 -

Adamax

0.0

0 50

100

epoch

150

200

250
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ML module
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[%]

[%]

Threshold 50.0%

100
90 A
80 -
70 A
60 -
50 A
40 -
30 A
20 -
10 -

\

— (Correct device
- [ncorrect device
— No detection

100

6 8 10 12 14 16
Amplifier gain [dB]

Threshold 90.0%

>

— (Correct device
- [ncorrect device
— N0 detection

e i T T |
§) 3 10 12 14 16

Amplifier gain [dB]

[%]

Threshold 70.0%

—— (Correct device
7 ——— [ncorrect device
80 - —— No detection
70 -
00 -
50 -
40 A
30 -
20 -
10 ~
O 1 1 1
0 2 4 §) 8 10 12 14 16
Amplifier gain [dB]
].OO_ [ = ] ]
I I I I I I I [ B More than 5 devices
90 - - |
LLELL L] = e
80 - 1 device
NEEEEEEEEETEE AN
N EEERERRERRINERER
4°'IIIIIIIIIIiIIIIII
N EEERERNENEINERER
N EERRRRREEFT I INEEN
N EEN Wil
0 2 4 §) 8 10 12 14 16

Amplifier gain [dB]
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ML module
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[%]

[%]

100

Threshold 50.0%

90 -
80 A
70 A
60 -
50 A
40 -
30 A
20 -
10 -

4
-  (Correct device

- [ncorrect device
—— No detection

100

8

10 12 14 16 18 20 22 24 26 28 30
Transponder extra loss [dB]

Threshold 90.0%

90 -
80 -
705
60 -
50 -
40
30 +
20 -
10 A

—
-  (Correct device

- [ncorrect device
—— No detection

8

10 12 14 16 18 20 22 24 26 28 30
Transponder extra loss [dB]

[%]

LOO

Threshold 70.0%

90 A
80 A
70 A
60 -
50 A
40 -
30 4
20 A
10 -

=
-  (Correct device

- [ncorrect device
—— No detection

100 -
90 -
80 -
70 =
60 -
50 A
40 -
30 -
20 -
10 -

%

4

6

8 10 12 14 16 18 20 22 24 26 28 30

Transponder extra loss [dB]

CE) B R R
B More than 5 devices

2-5 devices
HEl 1] device
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ML module
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Why Data Analytics?

Increasing computational power
Increasing number of network devices for analysis, beyond human capabilities
Growing progress in algorithms & theory developed by researchers

Advanced telemetry capabilities (streaming)

A2
(‘\'

UNICAMP

Calculations per Second per $1,000

Operators look for capabilities beyond throughput (traffic prediction, failure management,

advanced planning, performance monitoring, low margins and costs)

cxponential
Growinh of Computing

The exponential growth of computing is a marvelous quantitative
example of the exponentially growing returns from an evolutionary
process. We can express the exponential growth of computing in
terms of its accelerating pace: it 1ook 90 years to achieve the first
MIPS per 1000 dollars; now we add 1.2 MIPS per 1000 dollars

» SSmmre o= @
Cafte @2 Caffe fE% Caffe *I torch
NVIDIA.
Lo
‘?Tensor(F;Igyvﬂle theano G
20 Billion
18 4
Wearables / ARTIEICIA
s Smart TVs “S’/ 4 Internet ;,ﬁWt fl tug{
14 x‘f of stirs excitement. MACHINE

Tablets

2004 06 ‘08 10 "2 14 1€

LEARNING

DEER
LEARNING

1950°s 1960’s 1970’s 1980's 1990’s 2000’s 2010’s

Alan Lau
OFC’2020
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What to Monitor? N

: Pin
A C ~ ~
NS A influxDB
/NYR A BER
4 ) A ‘i\v{ I .
| /N4 AN -~ OSNR (estimated)
. - . /\‘/’f.,’:):\« = DSP Coefficients
‘ | ' & -\ 117 Env. Temp. A_
sage O e Controller
Streaming Telemetry AR 1 Laser Power Oniros et
Coll Ve Laser Bias SDN Information Base
ollector X~ >
. | J Alarms
Data Analytics
QoT estimation
Health check
Failure prediction
Failure localization
V% 152
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Data Analytics Applications
QoT Estimation

L. L . , Network Operation
- Network planning is becoming increasingly complex because of the multitude of

4 A
operation parameters AN AN N\
- In network planning, which 1s the QoT of an unestablished lightpath? (1 )) T@W' " 4(@)
\\\.,,,,;/ N—/ \E—;f/ /

Network Planning
Streaming Telemetry

Number of hops Collector

\ | J
Number of spans | |
Total length
Average link length
Maximum link length
Average span attenuation
Average dispersion
Modulation format

s
e

o8 3 — ~» ------ S
96 o Nl §~ - o
2 : 3 § . . AN S
8 ol MY E 1 1 Feasible/Unfeasible =
83 ;:::l:[uildm, = -K‘u'ijcldir, K=10) .D‘v.JN (Cosine <-10) Margin [dB] Data Analytics
B8 momeiquows  mSMIGE) DS Gerer-
TELM :Geuss an-3) W ANN Cla:ﬂ;uli(ﬂ AKN Regression
i TIM SPARKLE  CORONET
W R. M. Morais and J. Pedro, "Machine learning models for estimating quality of transmission in DWDM networks," 1n
%,  [EEE/OSA Journal of Optical Communications and Networking, vol. 10, no. 10, pp. D84-D99, Oct. 2018.
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Data Analytics Applications

Health Check Network Operation
OUTLIERS —) @ 4 )
: ificati i AN
Identification of anomalous lightpaths 5 . @ @_ ] _@
i L0 N\ -
Network Planning e
| Streaming Telemetry
Number of hops . Collector )
Number of spans | |
Total length
Average link length

Maximum link length
Average span attenuation
Average dispersion
Modulation format

08 — Q — - » _,
3'? 04 l E b , ’ . =
g 92 L L :‘ ' ;‘ &4
8 ol 7| i ; | Feasible/Unfeasible —
2 ;::(‘u:"dm k=1} " -mg;adn, K=10) T (Cosine, K=10) Margin [dB] Data Analytics
B8] mohiGmamc | mSwike  msaweery |
a4 (= SV’;I;;:» an-13) T-M;NN da»ﬁuh;prR}zLEM‘\l Re:;:;nor‘ig
W R. M. Morais and J. Pedro, "Machine learning models for estimating quality of transmission in DWDM networks," 1n
., ournal of Optical Communications and Networking, vol. 10, no. 10, pp. - , Oct. :
V.. [EEE/OSA Journal of Optical C t d Networking, vol. 10, no. 10, pp. D84-D99, Oct. 2018
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Data Analytics Applications

Failure prediction

N
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Research Article

Optics EXPRESS

Vol. 25, No. 16 | 7 Aug 2017 | OPTICS EXPRESS 18553

Failure prediction using machine learning and
time series in optical network

ZHILONG WANG,! MIN ZHANG,!" DANSHI WANG,! CHUANG SonNG,! MIN
Liu," JIN Li,* Lial Lou,’ AND ZHuo Liu?

IState Key Laboratory of Information Photonics and Optical Communications, Beijing University of
Posts and Telecommunications, Beijing 100876, China

2China Mobile Communications Corporation, Beijing 100033, China

“‘mzhang@bupt.edu.cn

e Monitors boards of China Telecom to predict failures in the
next day

e Uses SVM+Time series processing

e Identifies the parameters (laser bias, laser temperature,
environmental temperature) most related to the failures

e Achieves high prediction levels

Indicator Name Units
Input Optical Power (IOP) dBm
Laser Bias Current (LBC) mA
Laser Temperature Offset (LTO) .
Output Optical Power (OOP) dBm
Environmental Temperature (ET) G
Unusable Time S
Time |Indicatorl |Indicator2|Indicator3 | Indicator4|Indicator$| State
I-n -9.08 1.20 35.1 17.9 -9.06 ~=—=|Normal
1-3 -9.02 1.23] 359 182  -9.00 = Fail
t-2 -8.99 1.11 36.2 17.7|  -8.98 =—=Fail
1-1 -8.94|  1.09| 363 174  -8.95— Normal
! -9.01 1.15 36.2 173 -8.99 <= Normal
Predict l(we use DES)
+T | -892] 118 360 172 -9.02T[1'm1
» SVM Model
+kernel function, punishment factor
2200 = 96%
——-"‘"—'.-—'_’./
2000 - /' 494%
- = :‘U
3, -— o
& 18004 . . . ~192% B
= | N | G
- =
o9l B 5 B B SR IMY
55,) ~ Total failure g
% 1400 - B Successful prediction of failure 4 88% .‘.:,
— —u— Prediction accuracy &
g
1200- I I s6%%
1000 - . . . 84%
5 10 15

Number of days used on training

20 25 30 35
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Soft Failure Localization Using Machine Learning

Soft Failure Localization with SDN-based Network-wide Telemetry Accepted at
ECOC 2020!

Failure localization Kayol S. Mayer'* Jonathan A. Soares''’, Rossano P. Pinto®,
Christian E. Rothenberg?, Dalton S. Arantes'"’, and Darli A. A. Mello'"

’————————-————————————————--——————————-————-—N

Training Pipeline

Network Mirror Failure Generator

NSFNet

P L Emm e  —m — ——" e —p  — —m —— ——m  — —
SENEE SRR SR SR R SRR SRR TR T e e e e e

(

\
. . .

Streaming Telemetry
Collector

|
Neural Network ) \Failure [.ocalization y

§DN Information Basg

_/

\_
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Soft Failure Localization

Case study :
Monitored Parameters Links
2136 Components: - |
. . Network # Monitored parameters # of Cards # Monitored Source Destination Distance (km)

® 580 Unidirectional fiber Spain, element per card parameters Seattle (WA) Palo Alto (CA) 1100
® 624 Amphﬁers, Seattle (WA) San Diego (CA) 1600
° 42 O CM S: Transceivers 3 (Pin, Pout, OSNR) 772 2316 Seattle (WA) Champaing (IL) 2800
Palo Alto (CA) Salt Lake City (UT) 1000
o 72 WSSs; Palo Alto (CA)  San Diego (CA) 600
® 44 Splltters, Amplifiers 2 (Pin, Pout) 624 1248 San Diego (CA) Houston (TX) 2000
® 77 2 Trans CeiVGI‘S; Salt Lake City (UT) Boulder (CO) 600
3564 Salt Lake City (UT)  Ann Arbour (MI) 2400
Boulder (CO) Lincoln (NE) 800
. Boulder (CO) Houston (TX) 1100
Reque Sted SCIVICCS. Lincoln (NE) Champaing (IL) 700
® 1000 demands; Champaing (IL) Pittsburg (PA) 700
Houston (TX) Atlanta (GA) 1200
e 386 accepted; Houston (TX)  College Pk (MD) 2000
Atlanta (GA) Pittsburg (PA) 900
Pittsburg (PA) Ithaca (NY) 500
Pittsburg (PA) Princeton (NJ) 500
College Pk (MD) Ithaca (NY) 500
College Pk (MD) Princeton (NJ) 300
Ann Arbour (MI) Ithaca (NY) 800
Ann Arbour (MI) Princeton (NJ) 1000

NG
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Failure Localization Results

100*(d) T TJ=Correct device 100 —— Correct device 10077 1 —— Correct device
90- -=Incorrect device 90- -=Incorrect device 90- —=Incorrect device
R0 ——No detection R0)- ——No detection R0)- ——No detection
707 70 70-

— 607 — 601 — 60 “
50' 50 § 507 |
~ 40- ~ 40- 40-
30- 301 30)-
207 20- 20-
107 107 107
AN UEL UL LD d) e WAL UEE LT LT T L) WA L U DL D B LD U |
0 1 2 3 4 5 6 7 8 9 10 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 &8 10 12 14 16 18 20

Amplifier gain degradation [dB] Fiber additional loss |[dB] Transponder power degradation [dB]
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Failure Localization Results

’ \ 16.0 , I_._._._H_._._._._H.\ 1.0 £
' . i ' i Correct localization of =
™ 15.5 L S
= L Amp 1 2 5after 1.33 s —
— 15.0- i (gNMI Telemetry + ANN) g
: ] : o
s 14.5- - z
_ Neural Network 5)‘3 0. Source | E
3 ' timestamp ! i S
Dataset generation: 80 min —13.5° [ :
ANN training time: 6 min E' 13.0- i i
ANN Failure localization: <l1s > i E B
12.5- t : =
12.0_ : ' l l OO <
0 5 10 15 20 25 30
Time [S]
&z, 159
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