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• Co-Financed by the São Paulo Research Foundation (FAPESP).

• FAPESP is a solid and stable foundation, with budget of 1% of all state taxes collection 
(3.5 Billion SEK in 2021).

• ERC is FAPESP’s top program for collaborative research with Industries.

• ERC premise: the execution of internationally competitive research in accordance with 
global excellence benchmarks.

• There are currently more than 15 ERC in different technological areas, e.g., oil and gas, 
biotechnology, agribusiness, energy, artificial intelligence, etc.

• SMARTNESS is the first ERC in the Telecom area

https://fapesp.br/cpe/home

What is SMARTNESS 2030?
CPE: FAPESP Engineering Research Center (ERC)

https://fapesp.br/cpe  

https://fapesp.br/cpe/home
https://fapesp.br/cpe/


Founders

Ericsson, UNICAMP, 
USP and UFSCar.

Hub center at UNICAMP.

Long-term investment

10 years.

56 MBRL (~120 MSEK)
1:1:2 – Ericsson: FAPESP:  
UNICAMP.

50+ associated researchers
15+ university partners
120+ scholarships

 

 

Mission

Cutting-edge research 
in communication 
networks and advanced 
digital application 
services.

Towards 6G.

History/ Status
2018-20 – Work on the Proposal
Feb/ 2021 –  Prop. submission 
May / 2022 – FAPESP approval
Dec / 2022 – Kick-off ceremony 

April 2023 - Official start

 

 

SMARTNESS 2030
A networking-centric Engineering Research Center



Scientific & Technology Advancements

❑ CEC: Customized Edge Computing
❑

CA: Cognitive Architectures
& Machine Intelligence

❑ FCD: Fluid Control & Data planes

❑ TRU: Trustworthiness

❑ SUS: Sustainability

STAs

https://smartness2030.tech/scientific-and-technological-advancements/


● Academic Research Push: New research findings, ideas, trends, etc. from SMARTNESS pushed to Ericsson Research

● Ericsson Research Pull: New research contribution demands/opportunities from projects / standards brought to 
SMARTNESS 2030 to shape ongoing Research Strands and/or create new ones.

PULL

PUSH

● Technology Journeys
● Future Network Programs
● EU SNS JU Projects
● Standardization 
● Open Source
● Etc.

Beyond State-of-the-Art

PUSH/PULL modes of operation
“Technology Push & Market Pull” like workflows



Sobre SMARTNESS (2023-2033)
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CPE: FAPESP Engineering Research Center (ERC)



MOTIVATION



Where are we heading to?
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Content Delivery Network (CDN)
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Many layers!
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Wide Area Networks (WAN)
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Submarine Cables
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Cloud-Network Slicing
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Software-Defined Networking (SDN)
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Software-Defined Knowledge Plane
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Source: 
https://arxiv.org/pdf/1606.06222.pdf 
http://knowledgedefinednetworking.org/ 

https://arxiv.org/pdf/1606.06222.pdf
http://knowledgedefinednetworking.org/
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Source: Slide Courtesy by Pedro Casas: https://bigdama.ait.ac.at/pcasas/ 

https://bigdama.ait.ac.at/pcasas/
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Source: Slide Courtesy by Pedro Casas: https://bigdama.ait.ac.at/pcasas/ 

https://bigdama.ait.ac.at/pcasas/
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Source: Slide Courtesy by Pedro Casas: https://bigdama.ait.ac.at/pcasas/ 

https://bigdama.ait.ac.at/pcasas/


ML/AI Fundamentals & 
Application to Networking
ML 101

● Fundamentos de IA/ML
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Alan Lau 
OFC’2020P. J. Denning and T. G. Lewis, “Intelligence May Not Be Computable,” American Scientist, vol. 107, no. 6, Nov. 2019

Historical Perspective
Artificial Intelligence, Machine Learning are not new areas (and keep evolving)
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Alan Lau 
OFC’2020

P. J. Denning and T. G. Lewis, “Intelligence May 
Not Be Computable,” American Scientist, vol. 107, 
no. 6, Nov. 2019

● Increasing computational power
● Flood of available data − 20+ years of Internet worldwide
● Increasing support from industries
● Growing progress in algorithms & theory developed by researchers

N
o.

 o
f 

de
vi

ce
s

What is Machine Learning?
How to explain the recent boom on ML? 



Why AI/ML for networks?

25L. Gaspary 
IPSIN ’2024

Source: Michael Schapira: AI for networking, and networking for AI. The Networking Channel, 2023. 
Available at https://www.youtube.com/watch?v=i6DvbfIUPSg 

https://www.youtube.com/watch?v=i6DvbfIUPSg


Why AI/ML for networks?

26L. Gaspary 
IPSIN ’2024

Source: Michael Schapira: AI for networking, and networking for AI. The Networking Channel, 2023. 
Available at https://www.youtube.com/watch?v=i6DvbfIUPSg 

https://www.youtube.com/watch?v=i6DvbfIUPSg
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● We wish to give computers the ability to learn
○ Learning is the process of converting experience into expertise or knowledge

● Applied to:
○ Tasks that are too complex to program
○ Time-varying systems (adaptivity)

S. Shalev-Shwartz and S. Ben-David, Understanding Machine 
Learning: From Theoryto Algorithms. Wile y, 2014.

Boutaba et al., 2018)

What is Machine Learning?



How AI/ML for networks?

28L. Gaspary 
IPSIN ’2024

Source: Ricardo Parizotto, Bruno Loureiro Coelho, Diego Cardoso Nunes, Israat Haque, and Alberto Schaeffer-Filho: 
Offloading Machine Learning to Programmable Data Planes: A Systematic Survey. ACM Comput. Surv. 56, 1, Article 18 (2024).

Main methods



Learning approach Training dataset Problems aimed

Supervised Labeled
Classification and regression

Semi-supervised Incomplete labels

Classification Regression

(Boutaba et al., 2018)

Types of ML - Intelligence (1/3)
Supervised Learning



Types of ML - Intelligence (1/3)
Supervised Learning

Detecting anomalies, intrusion detection, traffic classification. 
For example, using labeled data 
○ to predict Mean Opinion Score (MOS) – Classification 
○ or forecast Quality of Experience (QoE) – Regression



Learning approach Training dataset Problems aimed

Unsupervised Unlabeled Clustering

Clustering

(Boutaba et al., 2018)

Types of ML - Intelligence (2/3)
Unsupervised Learning



Types of ML - Intelligence (2/3)
Unsupervised Learning

Network clustering, identifying patterns in user behavior.
For example, Grouping similar network traffic
○ for improved load balancing / routing / network function chains



Types of ML - Intelligence (3/3)
Reinforcement Learning

For example, 
● Optimizing Flow Routing, Dynamic Routing, Adaptive Traffic 

Management, Resource Allocation, etc.



Machine Learning Pipeline

● Data Collection (gathering data)

● Data Preprocessing (cleaning, transforming)

● Data Splitting (train/test split)

● Model Selection (algorithm choice)

● Model Training (fit model)

● Model Evaluation (assess performance)

● Model Testing (final test)

● Model Deployment (production use)
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Source: Slide Courtesy by Pedro Casas: https://bigdama.ait.ac.at/pcasas/ 

https://bigdama.ait.ac.at/pcasas/
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Source: Slide Courtesy by Pedro Casas: https://bigdama.ait.ac.at/pcasas/ 

https://bigdama.ait.ac.at/pcasas/


Machine Learning Model Categories

Source: M. A. Ridwan, N. A. M. Radzi, F. Abdullah and Y. E. Jalil, "Applications of Machine 
Learning in Networking: A Survey of Current Issues and Future Challenges," in IEEE Access 2021

H. Brink, J. W. Richards, and M. Fetherolf, Real-World Machine Learning. Shelter Island, NY, USA: 
Manning, 2017.



Machine Learning Model Categories

Source: M. A. Ridwan, N. A. M. Radzi, F. Abdullah and Y. E. Jalil, "Applications of Machine 
Learning in Networking: A Survey of Current Issues and Future Challenges," in IEEE Access 2021
Illustration of SVM hyperplane in 3-dimension space and its
optimal hyperplane and margin in 2-dimension space [



Machine Learning Model Categories

. Illustration of Random Forest classifier

Source: M. A. Ridwan, N. A. M. Radzi, F. Abdullah and Y. E. Jalil, "Applications of Machine 
Learning in Networking: A Survey of Current Issues and Future Challenges," in IEEE Access 2021

H. Brink, J. W. Richards, and M. Fetherolf, Real-World Machine Learning. Shelter Island, NY, USA: 
Manning, 2017.
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Source: Slide Courtesy by Pedro Casas: https://bigdama.ait.ac.at/pcasas/ 

https://bigdama.ait.ac.at/pcasas/
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Source: Slide Courtesy by Pedro Casas: https://bigdama.ait.ac.at/pcasas/ 

https://bigdama.ait.ac.at/pcasas/
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Source: Slide Courtesy by Pedro Casas: https://bigdama.ait.ac.at/pcasas/ 

https://bigdama.ait.ac.at/pcasas/


What is Blocking AI/ML in 
Networking?

● Challenges 
● Hazards 
● Trade-offs
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Source: Slide Courtesy by Pedro Casas: https://bigdama.ait.ac.at/pcasas/ 

https://bigdama.ait.ac.at/pcasas/
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Source: Slide Courtesy by Pedro Casas: https://bigdama.ait.ac.at/pcasas/ 

https://bigdama.ait.ac.at/pcasas/
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Source: Slide Courtesy by Pedro Casas: https://bigdama.ait.ac.at/pcasas/ 

https://bigdama.ait.ac.at/pcasas/
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Source: Slide Courtesy by Pedro Casas: https://bigdama.ait.ac.at/pcasas/ 

https://bigdama.ait.ac.at/pcasas/
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Source: Slide Courtesy by Pedro Casas: https://bigdama.ait.ac.at/pcasas/ 

https://bigdama.ait.ac.at/pcasas/
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Source: Slide Courtesy by Pedro Casas: https://bigdama.ait.ac.at/pcasas/ 

https://bigdama.ait.ac.at/pcasas/
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Source: Slide Courtesy by Pedro Casas: https://bigdama.ait.ac.at/pcasas/ 

https://bigdama.ait.ac.at/pcasas/
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Source: Slide Courtesy by Pedro Casas: https://bigdama.ait.ac.at/pcasas/ 

https://bigdama.ait.ac.at/pcasas/
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Source: Slide Courtesy by Pedro Casas: https://bigdama.ait.ac.at/pcasas/ 

https://bigdama.ait.ac.at/pcasas/
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Source: Slide Courtesy by Pedro Casas: https://bigdama.ait.ac.at/pcasas/ 

https://bigdama.ait.ac.at/pcasas/


ML & Networking
● Surveys of Research Works



Surveys of ML for Networking
Tons of use case examples



ML for Computer Systems and Networking
Survey of selected problem and solution examples

Source: Marios Evangelos Kanakis, Ramin Khalili, and Lin Wang. Machine Learning for Computer Systems and Networking: A Survey. ACM Comput. Surv.  2023



Source: R.   Boutaba et al. “A comprehensive survey on machine learning for networking: evolution, applications and research opportunities”. JISA, 2018.



Survey of Machine Intelligence for Networking
Network Traffic Prediction via Time Series Forecasting (TSF)

Source: R.   Boutaba et al. “A comprehensive survey on machine learning for networking: evolution, applications and research opportunities”. JISA, 2018.



ML for Networking Use Cases
Selected Publications 

● Casos reales 
○ YouTube QoE en redes 4G/5G 
○ Identificación de fallos suaves en redes 

ópticas usando Network Digital Twin



Why are traditional QoS metrics, like latency 
and bandwidth, insufficient alone for 
accurately predicting QoE in 5G networks 



Key Points

● Interpacket Gap – IPG can be used as a key metrics for objective QoE 
assessment
○ From IPG we can derive a few more metrics for QoE, such as EMA, 

DEMA, CUSUM
● IPGs along with other traditional QoS metrics are highly correlated to 

objective QoE KPIs
●Machine Learning can be used to predict QoE
○ correlation with flow-level and network QoS metrics



Regression - Unencrypted Traffic (1/2)

Which QoS features can be effectively used from the 
network level of unencrypted DASH traffic to estimate the 
QoE of adaptive video streaming?

Per-segment QoS features 
● RTT
● Packets
● Throughput relation to QoE



Regression - QoS Features (2/2)

1. Per-segment based QoS features.
a. RTT
b. Throughput
c. Packets

2. Adaptation algorithms correlation with different 
network use cases.

a. Buffered – BBA
b. Hybrid – Elastic
c. Throughput – Conventional



Classification - Encrypted Traffic (1/3)



Classification - QoS Features (2/3)

Real Time (Window) Comments

Packets count (total) [ w/ gt 100B] Ignoring ack packets of size 100B

Packet size distribution [w, (10-90)p] 10-90 percentile packet size distribution in a 
window

Throughput [w, distribution (10-90)p] 10-90 percentile throughput distribution in a 
window

Packet Time [IPGs, Inter Arrival Time] Inter Packet Gap (IPGs) of a window

IPGs features [EMA, DEMA, CUSUM] See the continuity of packets

IPGs [Avg, Std, w/ gt100B] Average, Standard deviation of window



Classification - ML Algorithms (3/3)

Supervised Machine Learning based 
model for objective assessment, such 
as,
● Decision Tree
● Random Forest
● K-nearest neighbors
● Artificial Neural Network (ANN)

Mapping between QoS and QoE KPIs for 
certain actions, i.e., resources 
optimization, SLA,  SDN decisions.

Objective QoE
● Stalls
● Bitrate
● Shifts

QoE = Given the input 
features, predict QoE values

Models accuracy  = Highly 
correlated features

Models – Regressions 
(continuous) and 
classifications (categorical)



Correlation - QoS to QoE
Use Case

QoS features correlation with the objective QoE stall and 
quality shifts.
Shifts and stalls are the main QoE indicators *

●5G – Blue (Real Traces)
●4G – Green (Real Traces)

* Fan Zhang, Long Xu, and Qian Zhang. 2013. Maximum-likelihood visual quality based on additive log-logistic 
model. In 2013 IEEE 15th International Workshop on Multimedia Signal Processing (MMSP). IEEE, 470–475.



Adaptive Bitrate Streaming Algorithms
Correlation - 4G

Elastic: Hybrid

Conv - Throughput

BBA- Buffered



Adaptive Bitrate Streaming Algorithms
Correlation - 5G

Elastic: Hybrid

Conv - Throughput

BBA- Buffered



How does ML help correlate complex QoS data, 
such as RSRP and RSRQ, with user-perceived 
video quality on YouTube?



Key Points
Running YouTube in multiple 4G/5G scenarios

● 5G outperforms 4G in YouTube 
streaming, as expected, but 
performance over currently 
deployed 5G nets is still not ideal

● 5G behaves greedily under mobility
● 5G experiences more stalling 

events compared to 4G in mobility
○ In 5G mobility, we observe a 

16.67 % increase in stalling 
events compared to those in 4G.



● Machine Learning Classifiers Features
○ Previous times (window), i.e., (1, 3, 5, 7, 9)-seconds to see if there 

is any correlation with the radio channel CLM, i.e., CQI, RSRQ, 
RSRP, SNR

○ i) Majority of a window, ii) Standard deviation, iii) 25, 50, and 75 
percentile of a window.

72

CLM - Player logs - Player events



Quality shifts – Resolutions

73

- 5G behaves greedily 
under mobility
- Even with stalling 

events during mobility, 
the player remains in 
higher resolutions 
instead of choosing a 
segment with a lower 
resolution and bitrate to 
avoid stalls

- 5G outperformed 4G by 
36.6 percent in hd2160 
resolution. But! More 
stalling events in 
Mobility in 5G.



ML for Networking Use Cases

D. A. A. Mello, K. S. Mayer, A. F. Escallón-Portilla, D. S. Arantes, R. P. Pinto and C. E. Rothenberg, 
"When Digital Twins Meet Optical Networks Operations," 2023 Optical Fiber Communications 
Conference and Exhibition (OFC), San Diego, CA, USA, 2023, pp. 1-3, doi: 
10.1364/OFC.2023.W4A.3.

Kayol S. Mayer, Rossano P. Pinto, Jonathan A. Soares, Dalton S. Arantes, Christian E. Rothenberg, 
Vinicius Cavalcante, Leonardo L. Santos, Filipe D. Moraes, and Darli A. A. Mello, "Demonstration of 
ML-Assisted Soft-Failure Localization Based on Network Digital Twins," J. Lightwave Technol. 40, 
4514-4520 (2022)

BR102023017526-0. "Método para estimar a qualidade de transmissão em redes ópticas e mídia 
de armazenamento legível por computador." Kayol Mayer,  Darli Mello, Marcos Almeida, Humberto 
Melo, Rossano Pinto, Christian Rothenberg e Dalton Soares.

● Casos reales 
○ Identificación de fallos suaves en redes 

ópticas usando Network Digital Twin
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What Problems in Optical Communications and Networks need ML?

H. Bock, Infinera, OSA PC, 2020
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What Problems in Optical Communications and Networks need ML?

H. Bock, Infinera, OSA PC, 2020

OPM

QoT

Failure 
Management

Traffic Prediction
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What problems in optical communications and networks need ML?

P. Djukic, Ciena, OSA PC, 2020

OPMQoT

Failure 
Management
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What problems in optical communications and networks need ML?

OPM QoT

Failure 
Management

Traffic PredictionNL mitigation



What problems in optical communications and networks need ML?

F. Musumeci et al., in IEEE Communications Surveys & 
Tutorials, vol. 21, no. 2, pp. 1383-1408, 2018.

79



What problems in optical communications and networks need ML?

F. Musumeci et al., in IEEE 
Communications Surveys & Tutorials, vol. 
21, no. 2, pp. 1383-1408, 2018.

● Optical Transmission

OPM

QoT

80



What problems in optical communications and networks need ML?

F. Musumeci et al., in IEEE 
Communications Surveys & Tutorials, vol. 
21, no. 2, pp. 1383-1408, 2018.

● Optical Transmission

NL mitigation

81



What problems in optical communications and networks need ML?

F. Musumeci et al., in IEEE 
Communications Surveys & Tutorials, vol. 
21, no. 2, pp. 1383-1408, 2018.

● Optical Networking

Failure 
Management

Traffic Prediction

82



Digital Twins in Optical Networks: 
Insights and Applications

83

 Darli A. A. Mello
 Kayol Mayer
 Rossano Pinto
 Christian Rothenberg
 Dalton Arantes

 School of Electrical and Computer Engineering (FEEC)
 University of Campinas (UNICAMP)
 Brazil
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What is a Network Digital Twin?

M. Bertoni, A. Bertoni, (2022), Designing solutions with the product-service systems digital twin: What is now and what is next?, Computers in Industry, Volume 
138, https://doi.org/10.1016/j.compind.2022.103629.

• But first, what is a digital twin? It is much more than a digital model or a simulator …

W. Kritzinger, M. Karner, G. Traar, J. Henjes, W. Sihn, Digital Twin in manufacturing: A categorical literature review and classification,IFAC-PapersOnLine, Volume 51, 
Issue 11, 2018, Pages 1016-1022.
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What is a Network Digital Twin?
• Network Digital Twin (ou Digital Twin Network)

Source: IRTF draft-zhou-nmrg-digitaltwin-network-concepts-00
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What is a Network Digital Twin?

1ST INTERNATIONAL WORKSHOP ON TECHNOLOGIES FOR NETWORK TWINS (TNT 2022)
https://noms2022.ieee-noms.org/ws4-1st-international-workshop-technologies-network-twins-tnt-2022 

https://noms2022.ieee-noms.org/ws4-1st-international-workshop-technologies-network-twins-tnt-2022
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What is a Network Digital Twin?
• Digital Twins in Optical Networks

IEEE Comm. Magazine 2021

OFC 2022
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NDT in Optical Networks

EDFAsTransponders

Physical Network

ROADMs

Data Collection
 (OSNR, Pin, Pout, G) Control (?)

Direct Collection {GN-Model or
ML-based Model

{

PCE/QoT Estimation App
Soft-Failure 

Localization App Traffic Prediction App

Network Application

Virtual Network

Northbound interface

Southbound Interface

Time-Series  DB
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NDT in Optical Networks

EDFAsTransponders

Physical Network

ROADMs

Data Collection
 (OSNR, Pin, Pout, G) Control (?)

Direct Collection {GN-Model or
ML-based Model

{

PCE/QoT Estimation App
Soft-Failure 

Localization App Traffic Prediction App

Network Application

Virtual Network

Northbound interface

Southbound Interface

Time-Series  DB

Parameter Real Telemetry Virtual Telemetry

EDFA_1_Pout 10 dBm 10.5 dBm

EDFA_1_Pin -15 dBm -14.7 dBm

TRX_2_OSNR 15 dB 17 dB

TRX_3_OSNR 13 dB 13 dB

TRX_5_OSNR 16 dB 14 dB
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Issues and Challenges
• How to address inconsistencies between the virtual and the real network?

○ Some parameters can be read directly from the real network (e.g. fiber attenuation)
○ Other parameters must be estimated from the model: e.g. OSNR

• NDT models should be optimized to yield measured parameters
• GN-based models should yield considerable deviations (QoT estimation discussion!)
• ML-based models
• Numerically-optimized models (e.g. gradient descent algorithm)
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Issues and Challenges
• How often to update the virtual network?

Pout
Pin

SNR

SDN database

Twin 
photograph P1 P2 P3 P4 P5 P6 P7 P8 P9

Photograph triggered by:
* Physical topology changes
* Lightpath setup/teardown
* Anomaly detection (diff based) 

Physical network

SDN telemetry

Virtual network

Twin photographs

P1
P2

Pn

...

NDT Time Series DB

Update
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Issues and Challenges
• Other issues (IETF)

○ Large-scale challenge (scalability, storage, data compression)

○ Interoperability 

○ Data modelling

○ Real-time requirements

○ Security risks
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Case Study: ML-based Soft-Failure Localization

• Lesson learned: for 

soft-failure localization, 

baseline training is the 

secret for proper algorihtm 

performance! 
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Case Study: ML-based Soft-Failure Localization
• Experimental setup
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Case Study: ML-based Soft-Failure Localization
• Experimental soft-failure localization
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Case Study: ML-based Soft-Failure Localization
• Soft-failure localization results
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Case Study: ML-based Soft-Failure Localization
• Double failure localization
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Conclusions

• DTs are gaining several fields of knowledge, and they should also become widespread in optical 
transmission systems

• NDTs should be of paramount importance for QoT estimation and soft-failure localization

• There are open challenges involving the NDT update behaviour and the consistency between 
the virtual and the physical network (related with QoT estimation!). Classic numerical 
optimization and ML-based techniques may be used

• We demonstrated an ML-based soft-failure estimation method based on synthetic failures 
generated in the virtual network



ML for Networking Use Cases
Selected Publications

on XR & Cloud Gaming identification



Abstract

100

● Objective: Traffic Classification of Augmented Reality (AR) and Cloud Gaming (CG)

● Importance & Necessity:
○ AR widespread adoption in retail and industrial applications. 
○ AR computational offloading to the remote server.
○ AR more sensitivity to delay 
○ Heterogeneous processing units (e.g. CPU, GPU, DPU, FPGA)

● Approaches & Findings:
○ Decision Tree (DT) & Random Forest (RF) models for classification.
○ The accuracy between 88.40% and 94.87% for network traffic classification into ‘AR’, 

‘CG’ and ‘other’ classes.
■ ‘Other’ class includes four application types: Video Conference (VC), Video

Streaming (VS), Live Video Streaming (LV), and Browsing.
○ Collected datasets for AR & CG
○ Evaluate & verification the models. 

 

and Facebook Navigation (FN) for activities like feed browsing

and profile checking. Although referred to as Non-CG in



Further readings
Check out and follow SMARTNESS Zenodo 

https://zenodo.org/communities/smartness2030/ 

https://zenodo.org/communities/smartness2030/


Conclusiones

102

● ML/AI are here to stay and will keep evolving and impacting networking (operations 

/ OPEX through automation, new revenue streams, etc.)

● “Data is the new oil” 

○ Like oil, data is valuable, but if unrefined it cannot really be used

● Recommendations:

○ Start collecting data (the 4 Vs challenge! Veracity, Velocity, Volume, Variety)

○ Identify and Rank your main “headaches” (e.g. cost, risk, dissatisfaction, etc.) 

○ Partner with ML/AI savvy (real-data hungry) Research Groups (e.g. Universities) 

○ Innovate and take some risks to play out the use case for ML/AI in your network



Gracias!

Preguntas?

chesteve@unicamp.br

https://smartness2030.tech/

mailto:chesteve@unicamp.br
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It’s more about the data set

112

● Most engineering applications use simple ML on domain-specific data sets
● Standardized open dataset for optical networks?
● Customer privacy/ company confidentiality / rarity of failure scenarios

Machine learning research Actual relevant 
problems in Industry

Alan Lau 
OFC’2020



113

Optical Performance Monitoring (OPM) H. Bock, Infinera, OSA PC, 2020

● SDN-based telemetry can provide a “health check” on connections and components

Century Link, Infinera, Telia Company
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Y. Pointurier, Huawei, ICTON, 2020

Quality of Transmission (QoT) Estimation
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Quality of Transmission (QoT) Estimation

H. Bock, Infinera, OSA PC, 2020
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Quality of Transmission (QoT) Estimation H. Bock, Infinera, OSA PC, 2020
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H. Bock, Infinera, OSA PC, 2020

Traffic Prediction

● Traffic predictions for load balancing
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Alan Lau 
OFC’2020

● Digital BackPropagation(DBP)’s sequence of interleaved linear and nonlinear operations

● Parameters of W and nonlinear function σ  can be learned via BP algorithm
● Learned DBP performs similarly to standard DBP but is computationally simpler 

can be modeled as a DNN structure

Fiber nonlinearity compensation using deep learning

Nonlinearity Compensation

C. Häger and H. D. Pfister, "Nonlinear Interference Mitigation via Deep Neural Networks," 2018 Optical Fiber Communications Conference and Exposition 
(OFC), San Diego, CA, 2018, pp. 1-3.
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Failure Management



Optical Performance Monitoring (OPM)

120
Alan Lau 
OFC’2020

● OPM is a set of measurements performed (@ Tx/Rx or intermediate nodes) on an optical signal 
to estimate physical parameters e.g. OSNR, CD etc. of an optical channel

● Reliable/efficient operation of optical networks requires real-time physical links information
● OPM is also becoming a key component to enable impairment-aware SDN



Optical Performance Monitoring (OPM)

121
Alan Lau 
OFC’2020

F.N. Khan et al., IEEE Photonics Technology Letters, Jun. 2012.

CD dependence OSNR dependence DGD dependence

Amplitude 
distributions ● Moments of μ

1
, μ

2
, μ

3 O
 of the he amplitude 

histogram can provide information about physical 
effects affecting transmission
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Failure Management
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Failure Management
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Failure Management

Estimation of

- Q-Factor
- SNR
- CD
- Filtering
- Etc.

Per lightpath direct failure identification

● Interesting for detecting of soft degradations with slow evolution

● Helps identifying the physical effects underlying the failure (e.g. filtering, nonlinearities)

● In case of hard failures of amplifiers and fibers, several lightpaths are affected, and a correlation algorithm 
is required for failure isolation
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● Uses clustering of ligthpaths with similar SNR
● If there are outliers, tries to find common 

resources among them
● Uses two types of monitors, for lightpaths and 

for devices
● Uses GNPy planning as a reference of the SNR
● The accuracy of the  algorithms is not 

statistically evaluated

Failure Management
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Failure Management

Per device direct failure identification

● Monitors boards and devices (e.g. lasers)

● Works with time-series

● Ignores the network-wide effect of the failure
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● Detects different types of failures (ramp, single 
event, small variations)

● Pre-analysis based on extreme studentized 
deviate tests

● Assurance based on a neural network with a 
7-input layer 

● Monitors different equipments individually

● Does not perform network-wide evaluation

Failure Management
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Failure Management
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Failure Management

● Monitors boards of China Telecom to predict failures in 
the next day

● Uses SVM+Time series processing

● Identifies the parameters (laser bias, laser temperature, 
environmental temperature) most related to the failures

● Achieves high prediction levels
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Failure Management

● Monitors boards of China Telecom to predict failures in 
the next day

● Uses SVM+Time series processing

● Identifies the parameters (laser bias, laser temperature, 
environmental temperature) most related to the failures

● Achieves high prediction levels
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Failure Management

Network-wide failure identification (our 
approach)

● Identifies and isolates failures based on 
telemetry carried out over the whole 
network

● Currently, works with the instantaneous 
network status

● Identifies problems in current status 
compared to a training status

● Currently, we are evaluating the capacity 
of generalization of the algorithm with 
respect to different types/levels of 
failures

 



Load Simulator

Components:
Transceivers;
Fibers;
EDFA amplifiers;
ROADMs:

● Splitters;
● WSSs;
● Adds & Drops;
● OCMs.

Algorithms:
Python
NetworkX - Network model;
Dijkstra - Routing;
First-fit - Spectrum allocation.

132Transceiver power =  -1dBm



2136 Components:
● 580 Unidirectional fiber spam;
● 624 Amplifiers;
● 42 OCMs;
● 72 WSSs;
● 44 Splitters;
● 772 Transceivers;

Requested services:
● 1000 demands;
● 386 accepted;

Source Destination Distance (km)
Seattle (WA) Palo Alto (CA) 1100
Seattle (WA) San Diego (CA) 1600
Seattle (WA) Champaing (IL) 2800

Palo Alto (CA) Salt Lake City (UT) 1000
Palo Alto (CA) San Diego (CA) 600

San Diego (CA) Houston (TX) 2000
Salt Lake City (UT) Boulder (CO) 600
Salt Lake City (UT) Ann Arbour (MI) 2400

Boulder (CO) Lincoln (NE) 800
Boulder (CO) Houston (TX) 1100
Lincoln (NE) Champaing (IL) 700

Champaing (IL) Pittsburg (PA) 700
Houston (TX) Atlanta (GA) 1200
Houston (TX) College Pk (MD) 2000
Atlanta (GA) Pittsburg (PA) 900

Pittsburg (PA) Ithaca (NY) 500
Pittsburg (PA) Princeton (NJ) 500

College Pk (MD) Ithaca (NY) 500
College Pk (MD) Princeton (NJ) 300
Ann Arbour (MI) Ithaca (NY) 800
Ann Arbour (MI) Princeton (NJ) 1000

NSFNet
National Science 
Foundation Network 
USA
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Load Simulator

Links



OSNR x Distance x nº ROADMs
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Load Simulator



Component Monitored 
parameters

Equipment Total monitored 
parameters

Transceivers Pin 3 772 2316

Pout

OSNR

OCMs Pout/Channel 96 42 4032

Amplifiers Pin 2 624 1248

Pout

7596

Monitorable parameters
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Load Simulator



Fault Simulator

Device faults table generated in the simulation

Component Fault Quantity

Transceivers Pout = 0 W 772 

Amplifiers Gain = 0 dB 624 

Fibers Pout = 0 W 582 

TOTAL 1978
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Load and Fault Simulator

Simulador de falha

Simulador de carga

Output files

137

Telemetry files

Auxiliary files

Network files
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ML - Input data

ML - Output data

Load and Fault Simulator
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Neural Networks

● Nonlinear filters;
● Universal approximators of any continuous function on compact (closed and 

bounded) subsets of n-dimensional Euclidian space.

Artificial neuron Artificial neural network
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Normalization

● Does not change the type of distribution;

● Improves the numerical stability of the model;
● May speed up the training process;
● Large input values saturate activation functions (e.g., sigmoid and ReLu).

Z-score normalization
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Nonlinear Activation Functions

● Without a nonlinear activation function in the artificial neural network, no matter how 
many layers it had, it would behave just like a linear single-layer perceptron;

● Allow the model to create complex mappings between the network’s inputs and 
outputs.

Softmax
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Optimizers

● Are algorithms or methods used to change the attributes of neural networks such as 
weights, learning rate, and momentum in order to reduce losses;

Adam (Adaptive Moment Estimation):
Uses estimations of first and second moments 
of gradient to adapt the learning rate for each weight 
of the neural network.

Adamax:
Based on Adam, Adamax replaces the second-order 
moment with the infinite order moment.
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Loss Functions

● Are functions that map an event or values of one or more variables onto a real 
number intuitively representing some "cost" associated with the event;

Regression loss functions: continuous values (e.g., MSE, MAE);
Classification loss functions: finite categorical values (e.g., cross-entropy, 
categorical cross-entropy);

Cross-entropy:

       
Categorical cross-entropy:
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Accuracy Metrics

● Accuracy is a metric for evaluating classification models. Basically, accuracy is the 
fraction of predictions our model got right.

Categorical accuracy: checks to see if the index of the maximal true value is equal 
to the index of the maximal predicted value.



Input layer Hidden layers Output layer

7596 monitorable 
parameters of the 
network.

Configurable. In 
this case, one 
layer with 1000 
neurons.

1978 equipment 
that may fail on 
the network.

ML module

Normalization of the input using “Zscore“.
Probabilistic output with “Softmax“.
Training optimization with “Adamax”.
Loss metric “categorical_crossentropy”
Accuracy metric “categorical_accuracy”.

...

...

...

...

......

Hidden layers

Output layerInput layer

Neural Network Parameters
Graphical representation of the Neural 

Network
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Results
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Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
==============================================================
dense (Dense)                (None, 1000)            7597000   
_________________________________________________________________
dropout (Dropout)           (None, 1000)                  0         
_________________________________________________________________
dense_1 (Dense)            (None, 1978)            1979978   
==============================================================
Total params: 9,576,978
Trainable params: 9,576,978
Non-trainable params: 0

ML module



Epoch 245/250
1978/1978 [==============================] - 3s 68ms/step - loss: 0.0175 - categorical_accuracy: 0.9995
Epoch 246/250
1978/1978 [==============================] - 3s 68ms/step - loss: 0.0172 - categorical_accuracy: 0.9995
Epoch 247/250
1978/1978 [==============================] - 3s 67ms/step - loss: 0.0171 - categorical_accuracy: 0.9995
Epoch 248/250
1978/1978 [==============================] - 3s 65ms/step - loss: 0.0171 - categorical_accuracy: 0.9995
Epoch 249/250
1978/1978 [==============================] - 3s 65ms/step - loss: 0.0168 - categorical_accuracy: 0.9995
Epoch 250/250
1978/1978 [==============================] - 3s 69ms/step - loss: 0.0161 - categorical_accuracy: 0.9995

ANN test accuracy: 99.95%

Total training time ~7.5 min

Training Epochs
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Results

ML module

Adamax
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ML module
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ML module
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ML module



Why Data Analytics?

151

● Increasing computational power
● Increasing number of network devices for analysis, beyond human capabilities
● Growing progress in algorithms & theory developed by researchers
● Advanced telemetry capabilities (streaming)
● Operators look for capabilities beyond throughput (traffic prediction, failure management, 

advanced planning, performance monitoring, low margins and costs)

N
o.

 o
f 

de
vi

ce
s

Alan Lau 
OFC’2020
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What to Monitor? Pin
   Pout
        BER
             OSNR (estimated)
                   DSP Coefficients
                       Env. Temp.
                       Laser Power
                       Laser Bias
                          Alarms
                                     
                        

Data Analytics

QoT estimation
Health check
Failure prediction
Failure localization
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Data Analytics Applications
QoT Estimation
- Network planning is becoming increasingly complex because of the multitude of 
operation parameters

- In network planning, which is the QoT of an unestablished lightpath? 

Number of hops
Number of spans
Total length
Average link length
Maximum link length
Average span attenuation
Average dispersion
Modulation format

Feasible/Unfeasible
Margin [dB] Data Analytics

Network Planning

Network Operation

R. M. Morais and J. Pedro, "Machine learning models for estimating quality of transmission in DWDM networks," in 
IEEE/OSA Journal of Optical Communications and Networking, vol. 10, no. 10, pp. D84-D99, Oct. 2018.
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Data Analytics Applications
Health Check 

- Identification of anomalous lightpaths

Number of hops
Number of spans
Total length
Average link length
Maximum link length
Average span attenuation
Average dispersion
Modulation format

Feasible/Unfeasible
Margin [dB] Data Analytics

Network Planning

Network Operation

R. M. Morais and J. Pedro, "Machine learning models for estimating quality of transmission in DWDM networks," in 
IEEE/OSA Journal of Optical Communications and Networking, vol. 10, no. 10, pp. D84-D99, Oct. 2018.
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Data Analytics Applications

● Monitors boards of China Telecom to predict failures in the 
next day

● Uses SVM+Time series processing

● Identifies the parameters (laser bias, laser temperature, 
environmental temperature) most related to the failures

● Achieves high prediction levels

Failure prediction 
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Soft Failure Localization

Failure localization 

Accepted at
ECOC 2020!



2136 Components:
● 580 Unidirectional fiber spam;
● 624 Amplifiers;
● 42 OCMs;
● 72 WSSs;
● 44 Splitters;
● 772 Transceivers;

Requested services:
● 1000 demands;
● 386 accepted;

Source Destination Distance (km)
Seattle (WA) Palo Alto (CA) 1100
Seattle (WA) San Diego (CA) 1600
Seattle (WA) Champaing (IL) 2800

Palo Alto (CA) Salt Lake City (UT) 1000
Palo Alto (CA) San Diego (CA) 600
San Diego (CA) Houston (TX) 2000

Salt Lake City (UT) Boulder (CO) 600
Salt Lake City (UT) Ann Arbour (MI) 2400

Boulder (CO) Lincoln (NE) 800
Boulder (CO) Houston (TX) 1100
Lincoln (NE) Champaing (IL) 700

Champaing (IL) Pittsburg (PA) 700
Houston (TX) Atlanta (GA) 1200
Houston (TX) College Pk (MD) 2000
Atlanta (GA) Pittsburg (PA) 900
Pittsburg (PA) Ithaca (NY) 500
Pittsburg (PA) Princeton (NJ) 500

College Pk (MD) Ithaca (NY) 500
College Pk (MD) Princeton (NJ) 300
Ann Arbour (MI) Ithaca (NY) 800
Ann Arbour (MI) Princeton (NJ) 1000
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Links

Soft Failure Localization
Case study

Network 
element

# Monitored parameters 
per card

# of Cards # Monitored 
parameters

Transceivers 3 (Pin, Pout, OSNR) 772 2316

Amplifiers 2 (Pin, Pout) 624 1248

3564

Monitored Parameters
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Failure Localization Results
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Failure Localization Results

Dataset generation: 80 min
ANN training time: 6 min
ANN Failure localization: <1s 


